1
|
Andorra M, Freire A, Zubizarreta I, de Rosbo NK, Bos SD, Rinas M, Høgestøl EA, de Rodez Benavent SA, Berge T, Brune-Ingebretse S, Ivaldi F, Cellerino M, Pardini M, Vila G, Pulido-Valdeolivas I, Martinez-Lapiscina EH, Llufriu S, Saiz A, Blanco Y, Martinez-Heras E, Solana E, Bäcker-Koduah P, Behrens J, Kuchling J, Asseyer S, Scheel M, Chien C, Zimmermann H, Motamedi S, Kauer-Bonin J, Brandt A, Saez-Rodriguez J, Alexopoulos LG, Paul F, Harbo HF, Shams H, Oksenberg J, Uccelli A, Baeza-Yates R, Villoslada P. Predicting disease severity in multiple sclerosis using multimodal data and machine learning. J Neurol 2024; 271:1133-1149. [PMID: 38133801 PMCID: PMC10896787 DOI: 10.1007/s00415-023-12132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging and multimodal biomarkers to define the risk of disease activity. METHODS We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance was conducted in an independent prospective cohort of 271 MS patients from a single centre. RESULTS We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable in both cohorts. CONCLUSION Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.
Collapse
Affiliation(s)
- Magi Andorra
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Ana Freire
- School of Management, Pompeu Fabra University, Barcelona, Spain
- UPF Barcelona School of Management, Balmes 132, 08008, Barcelona, Spain
| | - Irati Zubizarreta
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Steffan D Bos
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Melanie Rinas
- Institute for Computational Biomedicine, Heidelberg University Hospital, and Heidelberg University, Heidelberg, Germany
| | - Einar A Høgestøl
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | | | - Tone Berge
- Oslo University Hospital, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | | | - Federico Ivaldi
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Cellerino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gemma Vila
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Albert Saiz
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Elisabeth Solana
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | | | | | | | - Susanna Asseyer
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Claudia Chien
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Alex Brandt
- Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University Hospital, and Heidelberg University, Heidelberg, Germany
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Athens, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Friedemann Paul
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanne F Harbo
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Hengameh Shams
- Department of Neurology, University of California, San Francisco, USA
| | - Jorge Oksenberg
- Department of Neurology, University of California, San Francisco, USA
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Pablo Villoslada
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Multicentre Harmonisation of a Six-Colour Flow Cytometry Panel for Naïve/Memory T Cell Immunomonitoring. J Immunol Res 2020; 2020:1938704. [PMID: 32322591 PMCID: PMC7153001 DOI: 10.1155/2020/1938704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023] Open
Abstract
Background Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naïve/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naïve/memory subset frequencies particularly in the whole blood setting. Conclusion Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options.
Collapse
|