1
|
Watanabe M, Maekawa M, Miyoshi K, Sato T, Sato Y, Kumondai M, Fukasawa M, Mano N. Global and Targeted Metabolomics for Revealing Metabolomic Alteration in Niemann-Pick Disease Type C Model Cells. Metabolites 2024; 14:515. [PMID: 39452896 PMCID: PMC11509386 DOI: 10.3390/metabo14100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is an inherited disorder characterized by a functional deficiency of cholesterol transport proteins. However, the molecular mechanisms and pathophysiology of the disease remain unknown. METHODS In this study, we identified several metabolite characteristics of NPC that may fluctuate in a cellular model of the disease, using both global and targeted metabolomic analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Three cell lines, HepG2 cells (wild-type[WT]) and two NPC model HepG2 cell lines in which NPC1 was genetically ablated (knockout [KO]1 and KO2), were used for metabolomic analysis. Data were subjected to enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS The enrichment analysis of global metabolomics revealed that 8 pathways in KO1 and 16 pathways in KO2 cells were notably altered. In targeted metabolomics for 15 metabolites, 4 metabolites in KO1 and 10 metabolites in KO2 exhibited statistically significant quantitative changes in KO1 or KO2 relative to WT. Most of the altered metabolites were related to creatinine synthesis and cysteine metabolism pathways. CONCLUSIONS In the future, our objective will be to elucidate the relationship between these metabolic alterations and pathophysiology.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
| | - Masamitsu Maekawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo 162-8640, Japan;
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.)
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
2
|
Motamed-Gorji N, Khalil Y, Gonzalez-Robles C, Khan S, Mills P, Garcia-Moreno H, Ging H, Tariq A, Clayton PT, Giunti P. Elevated Bile Acid 3β,5α,6β-Trihydroxycholanoyl Glycine in a Subset of Adult Ataxias Including Niemann-Pick Type C. Antioxidants (Basel) 2024; 13:561. [PMID: 38790666 PMCID: PMC11117656 DOI: 10.3390/antiox13050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Ataxia is a common neurological feature of Niemann-Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. These bile acids have been suggested as useful biomarkers to detect NPC. Concentrations of 3β,5α,6β-trihydroxycholanyl glycine (3β,5α,6β-triOH-Gly) and 3β,7β-dihydroxy-5-cholenyl glycine (3β,7β-diOH-Δ5-Gly) were measured in plasma of 184 adults with idiopathic ataxia. All patients were tested with whole genome sequencing containing hereditary ataxia panels, which include NPC1 and NPC2 mutations and other genetic causes of ataxia. Plasma 3β,5α,6β-triOH-Gly above normal (>90 nM) was found in 8 out of 184 patients. One patient was homozygous for the p.(Val1165Met) mutation in the NPC1 gene. The remaining seven included one patient with Friedreich's ataxia and three patients with autoimmune diseases. Oxidative stress is known to be increased in Friedreich's ataxia and in autoimmune diseases. Therefore, this subset of patients possibly shares a common mechanism that determines the increase of this bile acid. In a large cohort of adults with ataxia, plasma 3β,5α,6β-triOH-Gly was able to detect the one patient in the cohort with NPC1 disease, but also detected oxidation of cholesterol by ROS in other disorders. Plasma 3β,7β-diOH-Δ5-Gly is not a potential biomarker for NPC1.
Collapse
Affiliation(s)
- Nazgol Motamed-Gorji
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK (P.M.)
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Shamsher Khan
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Philippa Mills
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK (P.M.)
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Heather Ging
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Ambreen Tariq
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| | - Peter T. Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK (P.M.)
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK (H.G.-M.)
| |
Collapse
|
3
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
5
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
6
|
Maekawa M, Miyoshi K, Narita A, Sato T, Sato Y, Kumondai M, Kikuchi M, Higaki K, Okuyama T, Eto Y, Sakamaki H, Mano N. Development of a Highly Sensitive and Rapid Liquid Chromatography–Tandem Mass Spectrometric Method Using a Basic Mobile Phase Additive to Determine the Characteristics of the Urinary Metabolites for Niemann–Pick Disease Type C. Biol Pharm Bull 2022; 45:1259-1268. [DOI: 10.1248/bpb.b22-00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Aya Narita
- Division of Child Neurology, Tottori University Hospital
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders
| | | | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Abe A, Maekawa M, Sato T, Sato Y, Kumondai M, Takahashi H, Kikuchi M, Higaki K, Ogura J, Mano N. Metabolic Alteration Analysis of Steroid Hormones in Niemann-Pick Disease Type C Model Cell Using Liquid Chromatography/Tandem Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084459. [PMID: 35457276 PMCID: PMC9025463 DOI: 10.3390/ijms23084459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Niemann–Pick disease type C (NPC) is an autosomal recessive disease caused by a functional deficiency of cholesterol-transporting proteins in lysosomes, and exhibits various clinical symptoms. Since mitochondrial dysfunction in NPC has recently been reported, cholesterol catabolism to steroid hormones may consequently be impaired. In this study, we developed a comprehensive steroid hormone analysis method using liquid chromatography/tandem mass spectrometry (LC–MS/MS) and applied it to analyze changes in steroid hormone concentrations in NPC model cells. We investigated the analytical conditions for simultaneous LC–MS/MS analysis, which could be readily separated from each other and showed good reproducibility. The NPC phenotype was verified as an NPC model with mitochondrial abnormalities using filipin staining and organelle morphology observations. Steroid hormones in the cell suspension and cell culture medium were also analyzed. Steroid hormone analysis indicated that the levels of six steroid hormones were significantly decreased in the NPC model cell and culture medium compared to those in the wild-type cell and culture medium. These results indicate that some steroid hormones change during NPC pathophysiology and this change is accompanied by mitochondrial abnormalities.
Collapse
Affiliation(s)
- Ai Abe
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
- Correspondence: ; Tel.: +81-22-717-7541
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Hayato Takahashi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| |
Collapse
|
8
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
9
|
Biomarker analysis of Niemann-Pick disease type C using chromatography and mass spectrometry. J Pharm Biomed Anal 2020; 191:113622. [PMID: 32998104 DOI: 10.1016/j.jpba.2020.113622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive degradation of central nervous system. The age of the onset varies from perinatal to adulthood. Patients with NPC are affected in the central nervous system, peripheral nerves, and systemic organs. From these background, it is extremely difficult to discover NPC clinically and diagnose it correctly. The procedure of the conventional laboratory methods are complicated and it takes long time to obtain the result. Because of the importance of early treatments and the shortcomings of conventional diagnostic methods for NPC, remarkable attention has been paid to biomarkers and chemical diagnoses. In the last decade, many NPC biomarkers have been reported. They are classified as cholesterol-related metabolites, sphingolipid metabolites, and novel phospholipid metabolites, respectively. Therefore, these are all lipid metabolites. Various chemical analysis methods have been used for their identification. In addition, chromatography and mass spectrometry are mainly used for their quantification. This review article outlines NPC biomarkers reported in the last decade and their analytical methods.
Collapse
|
10
|
Iwahori A, Maekawa M, Narita A, Kato A, Sato T, Ogura J, Sato Y, Kikuchi M, Noguchi A, Higaki K, Okuyama T, Takahashi T, Eto Y, Mano N. Development of a Diagnostic Screening Strategy for Niemann-Pick Diseases Based on Simultaneous Liquid Chromatography-Tandem Mass Spectrometry Analyses of N-Palmitoyl-O-phosphocholine-serine and Sphingosylphosphorylcholine. Biol Pharm Bull 2020; 43:1398-1406. [PMID: 32581190 DOI: 10.1248/bpb.b20-00400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early diagnosis of Niemann-Pick diseases (NPDs) is important for better prognosis of such diseases. N-Palmitoyl-O-phosphocholine-serine (PPCS) is a new NPD biomarker possessing high sensitivity, and with its combination with sphingosylphosphocholine (SPC) it may be possible to distinguish NPD-C from NPD-A/B. In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (method 1) and a validated LC-MS/MS analysis (method 2) of PPCS and SPC were developed, and we have proposed a diagnostic screening strategy for NPDs using a combination of serum PPCS and SPC concentrations. Nexera and API 5000 were used as LC-MS/MS systems. C18 columns with lengths of 10 and 50 mm were used for method 1 and 2, respectively. 2H3-Labeled PPCS and nor-SPC were used as internal standards. Selective reaction monitoring in positive-ion mode was used for MS/MS. Run times of 1.2 and 8 min were set for methods 1 and 2, respectively. In both methods 1 and 2, two analytes showed high linearity in the range of 1-4000 ng/mL. Method 2 provided high accuracy and precision in method validation. Serum concentrations of both analytes were significantly higher in NPD-C patients than those of healthy subjects in both methods. Serum PPCS correlated between methods 1 and 2; however, it was different in the case of SPC. The serum PPCS/SPC ratio was different in healthy subjects, NPD-C, and NPD-A/B. These results suggest that using a combination of the two LC-MS/MS analytical methods for PPCS and SPC is useful for diagnostic screening of NPDs.
Collapse
Affiliation(s)
- Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital
| | - Akie Kato
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
11
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Metabolomic Studies of Lipid Storage Disorders, with Special Reference to Niemann-Pick Type C Disease: A Critical Review with Future Perspectives. Int J Mol Sci 2020; 21:ijms21072533. [PMID: 32260582 PMCID: PMC7178094 DOI: 10.3390/ijms21072533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger complex pathogenic cascades with other organelles collaterally affected. This process leads to cell dysfunction and death, particularly in the central nervous system. One valuable approach to gaining insights into the global impact of lysosomal dysfunction is through metabolomics, which represents a discovery tool for investigating disease-induced modifications in the patterns of large numbers of simultaneously-analysed metabolites, which also features the identification of biomarkers Here, the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is explored in order to facilitate our understanding of the biomolecular basis of these conditions. This review therefore surveys the benefits of applying ’state-of-the-art’ metabolomics strategies, both univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant limitations of these techniques are also discussed, along with the latest advances and developments. We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for probing LSDs, most especially for the detection and validation of potential biomarkers. They also show much promise for monitoring disease progression and the evaluation of therapeutic strategies and targets.
Collapse
|
13
|
MAEKAWA M, MANO N. Identification and Evaluation of Biomarkers for Niemann-Pick Disease Type C Based on Chemical Analysis Techniques. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
14
|
Maekawa M, Jinnoh I, Narita A, Iida T, Saigusa D, Iwahori A, Nittono H, Okuyama T, Eto Y, Ohno K, Clayton PT, Yamaguchi H, Mano N. Investigation of diagnostic performance of five urinary cholesterol metabolites for Niemann-Pick disease type C. J Lipid Res 2019; 60:2074-2081. [PMID: 31586016 DOI: 10.1194/jlr.m093971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder characterized by progressive nervous degeneration. Because of the diversity of clinical symptoms and onset age, the diagnosis of this disease is difficult. Therefore, biomarker tests have attracted significant attention for earlier diagnostics. In this study, we developed a simultaneous analysis method for five urinary conjugated cholesterol metabolites, which are potential diagnostic biomarkers for a rapid, convenient, and noninvasive chemical diagnosis, using LC/MS/MS. By the method, their urinary concentrations were quantified and the NPC diagnostic performances were evaluated. The developed LC/MS/MS method showed high accuracy and satisfied all analytical method validation criteria. When the urine of healthy controls and patients with NPC was analyzed, three of five urinary conjugated cholesterol metabolite concentrations corrected by urinary creatinine were significantly higher in the patients with NPC. As a result of receiver operating characteristics analysis, these urinary metabolites might have excellent diagnostic marker performance. 3β-Sulfooxy-7β-hydroxy-5-cholenoic acid showed particularly excellent diagnostic performance with both 100% clinical sensitivity and specificity, suggesting that it is a useful NPC diagnostic marker. The urinary conjugated cholesterol metabolites exhibited high NPC diagnostic marker performance and could be used for NPC diagnosis.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan
| | - Isamu Jinnoh
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Takashi Iida
- College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo 152-0011, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders, Asou-ku, Kawasaki, Kanagawa 215-0026, Japan
| | - Kousaku Ohno
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Peter T Clayton
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|