1
|
Endo Y, Sasaki K, Ikewaki K. Bridging the Gap Between the Bench and Bedside: Clinical Applications of High-density Lipoprotein Function. J Atheroscler Thromb 2024; 31:1239-1248. [PMID: 38925924 PMCID: PMC11374562 DOI: 10.5551/jat.rv22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Decades of research have reshaped our understanding of high-density lipoprotein (HDL) , shifting our focus from cholesterol (C) levels to multifaceted functionalities. Epidemiological studies initially suggested an association between HDL-C levels and cardiovascular disease (CVD) risk; however, such a simple association has not been indicated by recent studies. Notably, genome-wide studies have highlighted discrepancies between HDL-C levels and CVD outcomes, urging a deeper exploration of the role of HDL. The key to this shift lies in elucidating the role of HDL in reverse cholesterol transport (RCT), which is a fundamental anti-atherosclerotic mechanism. Understanding RCT has led to the identification of therapeutic targets and novel interventions for atherosclerosis. However, clinical trials have underscored the limitations of HDL-C as a therapeutic target, prompting the re-evaluation of the role of HDL in disease prevention. Further investigations have revealed the involvement of HDL composition in various diseases other than CVD, including chronic kidney disease, Alzheimer's disease, and autoimmune diseases. The anti-inflammatory, antioxidative, and anti-infectious properties of HDL have emerged as crucial aspects of its protective function, opening new avenues for novel biomarkers and therapeutic targets. Omics technologies have provided insights into the diverse composition of HDL, revealing disease-specific alterations in the HDL proteome and lipidome. In addition, combining cell-based and cell-free assays has facilitated the evaluation of the HDL functionality across diverse populations, offering the potential for personalized medicine. Overall, a comprehensive understanding of HDL multifunctionality leads to promising prospects for future clinical applications and therapeutic developments, extending beyond cardiovascular health.
Collapse
Affiliation(s)
- Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama, Japan
| | - Kei Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Seto Y, Nagao M, Iino T, Harada A, Murakami K, Miwa K, Shinohara M, Nishimori M, Yoshikawa S, Asakura J, Fujioka T, Ishida T, Hirata KI, Toh R. Impaired Cholesterol Uptake Capacity in Patients with Hypertriglyceridemia and Diabetes Mellitus. J Appl Lab Med 2024; 9:728-740. [PMID: 38574000 DOI: 10.1093/jalm/jfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Although low high-density lipoprotein cholesterol (HDL-C) levels are a common metabolic abnormality associated with insulin resistance, their role in cardiovascular risk stratification remains controversial. Recently, we developed a simple, high-throughput, cell-free assay system to evaluate the "cholesterol uptake capacity (CUC)" as a novel concept for HDL functionality. In this study, we assessed the CUC in patients with hypertriglyceridemia and diabetes mellitus. METHODS The CUC was measured using cryopreserved serum samples from 285 patients who underwent coronary angiography or percutaneous coronary intervention between December 2014 and May 2019 at Kobe University Hospital. RESULTS The CUC was significantly lower in diabetic patients (n = 125) than in nondiabetic patients (93.0 vs 100.7 arbitrary units (A.U.), P = 0.002). Patients with serum triglyceride (TG) levels >150 mg/dL (n = 94) also had a significantly lower CUC (91.8 vs 100.0 A.U., P = 0.004). Furthermore, the CUC showed a significant inverse correlation with TG, hemoglobin A1c (Hb A1c), homeostasis model assessment of insulin resistance (HOMA-IR), and body mass index (BMI). Finally, the HDL-C/Apolipoprotein A1 (ApoA1) ratio, calculated as a surrogate index of HDL particle size, was significantly positively correlated with the CUC (r2 = 0.49, P < 0.001), but inversely correlated with TG levels (r2 = -0.30, P < 0.001). CONCLUSIONS The CUC decreased in patients with hypertriglyceridemia and diabetes mellitus, and HDL particle size was a factor defining the CUC and inversely correlated with TG levels, suggesting that impaired CUC in insulin-resistant states was partially due to the shift in HDL towards smaller particles. These findings provide a better understanding of the mechanisms underlying impaired HDL functionality.
Collapse
Affiliation(s)
- Yutaro Seto
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Makoto Nishimori
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Sachiko Yoshikawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Junko Asakura
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tomoo Fujioka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
3
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff MJ, Ronda N. Inflammation and immunomodulatory therapies influence the relationship between ATP-binding cassette A1 membrane transporter-mediated cholesterol efflux capacity and coronary atherosclerosis in rheumatoid arthritis. J Transl Autoimmun 2023; 7:100209. [PMID: 37520890 PMCID: PMC10371792 DOI: 10.1016/j.jtauto.2023.100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives High-density lipoprotein (HDL) removes cholesterol from cells in atherosclerotic lesions, a function known as cholesterol efflux capacity (CEC). ATP-binding-cassette A1 (ABCA1) membrane transporter starts cholesterol transfer from macrophages to HDL particles. In rheumatoid arthritis (RA), methotrexate and biologic disease modifying drugs (bDMARDs) are atheroprotective whereas corticosteroids and C-reactive protein (CRP) are proatherogenic. We evaluated the influence of these factors on the relationship of ABCA1-CEC with atherosclerosis and cardiovascular events. Methods Atherosclerosis was evaluated with computed tomography angiography in 140 patients with RA and repeated in 99 after 6.9 ± 0.3 years. Events including acute coronary syndromes, stroke, cardiovascular death, claudication, revascularization, and heart failure were recorded. ABCA1-CEC was quantified in J774A.1 murine macrophages and reported as percentage of effluxed over intracellular cholesterol. Results Higher ABCA1-CEC associated with (i) more calcified plaques at baseline only in patients with CRP>7 mg/L (median) (p-interaction = 0.001) and methotrexate nonusers (p-interaction = 0.037), and more partially-calcified plaques only in bDMARD nonusers (p-interaction = 0.029); (ii) fewer new calcified plaques in patients with below-median but not higher time-averaged CRP (p-interaction = 0.028); (iii) fewer new total and calcified plaques in prednisone unexposed but not patients exposed to prednisone during follow-up (p-interaction = 0.034 and 0.004) and (iv) more new plaques in baseline bDMARD nonusers and fewer in bDMARD users (p-interaction ≤ 0.001). Also, ABCA1-CEC associated with greater cardiovascular risk only in baseline prednisone users (p-interaction = 0.027). Conclusion ABCA1-CEC associated with decreased atherosclerosis in patients with below-median baseline and time-averaged CRP and bDMARD use. Conversely, ABCA1-CEC associated with increased plaque in those with higher CRP, corticosteroid users, methotrexate nonusers, and bDMARD nonusers. While in well-treated and controlled disease ABCA1-CEC appears atheroprotective, in uncontrolled RA its action may be masked or fail to counteract the inflammation-driven proatherogenic state.
Collapse
Affiliation(s)
- George A. Karpouzas
- Division of Rheumatology, Harbor-UCLA and The Lundquist Institute, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Sarah R. Ormseth
- Division of Rheumatology, Harbor-UCLA and The Lundquist Institute, Torrance, CA, USA
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Matthew J. Budoff
- Division of Cardiology, Harbor-UCLA and The Lundquist Institute, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
4
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff MJ, Ronda N. Statins influence the relationship between ATP-binding cassette A1 membrane transporter-mediated cholesterol efflux capacity and coronary atherosclerosis in rheumatoid arthritis. J Transl Autoimmun 2023; 7:100206. [PMID: 37484708 PMCID: PMC10362327 DOI: 10.1016/j.jtauto.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives Cholesterol efflux capacity (CEC) is the main antiatherogenic function of high-density lipoprotein (HDL). ATP-binding-cassette A1 (ABCA1) membrane transporter initiates cholesterol export from arterial macrophages to pre-β HDL particles fostering their maturation; in turn, those accept cholesterol through ABCG1-mediated export. Impaired pre-β HDL maturation may disrupt the collaborative function of the two transporters and adversely affect atherosclerosis. Statins exert atheroprotective functions systemically and locally on plaque. We here evaluated associations between ABCA1-CEC, coronary atherosclerosis and cardiovascular risk and the influence of statins on those relationships in rheumatoid arthritis (RA). Methods Evaluation with computed tomography angiography was undertaken in 140 patients and repeated in 99 after 6.9 ± 0.3 years. Events comprising cardiovascular death, acute coronary syndromes, stroke, claudication, revascularization and heart failure were recorded. ABCA1-CEC and ABCG1-CEC were evaluated in J774A.1 macrophages and Chinese hamster ovary (CHO) cells respectively and expressed as percentage of effluxed over total intracellular cholesterol. Covariates in all cardiovascular event risk and plaque outcome models included atherosclerotic cardiovascular disease (ASCVD) risk score and high-density lipoprotein cholesterol. Results ABCA1-CEC negatively correlated with ABCG1-CEC (r = -0.167, p = 0.049). ABCA1-CEC associated with cardiovascular risk (adjusted hazard ratio 2.05 [95%CI 1.20-3.48] per standard deviation [SD] increment). There was an interaction of ABCA1-CEC with time-varying statin use (p = 0.038) such that current statin use inversely associated with risk only in patients with ABCA1-CEC below the upper tertile. ABCA1-CEC had no main effect on plaque or plaque progression; instead, ABCA1-CEC (per SD) associated with fewer baseline total plaques (adjusted rate ratio [aRR] 0.81, [95%CI 0.65-1.00]), noncalcified plaques (aRR 0.78 [95%CI 0.61-0.98]), and vulnerable low-attenuation plaques (aRR 0.41 [95%CI 0.23-0.74]) in statin users, and more low-attenuation plaques (aRR 1.91 [95%CI 1.18-3.08]) in nonusers (p-for-interaction = 0.018, 0.011, 0.025 and < 0.001 respectively). Moreover, ABCA1-CEC (per SD) associated with greater partially/fully-calcified plaque progression (adjusted odds ratio 3.07 [95%CI 1.20-7.86]) only in patients not exposed to statins during follow-up (p-for-interaction = 0.009). Conclusion In patients with RA, higher ABCA1-CEC may reflect a proatherogenic state, associated with enhanced cardiovascular risk. Statin use may unmask the protective impact of ABCA1-mediated cholesterol efflux on plaque formation, progression and cardiovascular risk.
Collapse
Affiliation(s)
- George A. Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah R. Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | | | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Matthew J. Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Tada H, Okada H, Nohara A, Toh R, Harada A, Murakami K, Iino T, Nagao M, Ishida T, Hirata KI, Takamura M, Kawashiri MA. Impact of High-Density Lipoprotein Function, Rather Than High-Density Lipoprotein Cholesterol Level, on Cardiovascular Disease Among Patients With Familial Hypercholesterolemia. Circ J 2023; 87:806-812. [PMID: 36436874 DOI: 10.1253/circj.cj-22-0560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
BACKGROUND Recently, the function of high-density lipoprotein (HDL), rather than the HDL cholesterol (HDL-C) level, has been attracting more attention in risk prediction for coronary artery disease (CAD). METHODS AND RESULTS Patients with clinically diagnosed familial hypercholesterolemia (FH; n=108; male/female, 51/57) were assessed cross-sectionally. Serum cholesterol uptake capacity (CUC) levels were determined using our original cell-free assay. Linear regression was used to determine associations between CUC and clinical variables, including low-density lipoprotein cholesterol and the carotid plaque score. Multivariable logistic regression analysis was used to test factors associated with the presence of CAD. Among the 108 FH patients, 30 had CAD. CUC levels were significantly lower among patients with than without CAD (median [interquartile range] 119 [92-139] vs. 142 [121-165] arbitrary units [AU]; P=0.0004). In addition, CUC was significantly lower in patients with Achilles tendon thickness ≥9.0 mm than in those without Achilles tendon thickening (133 [110-157] vs. 142 [123-174] AU; P=0.047). Serum CUC levels were negatively correlated with the carotid plaque score (Spearman's r=0.37; P=0.00018). Serum CUC levels were significantly associated with CAD, after adjusting for other clinical variables (odds ratio=0.86, 95% CI=0.76-0.96, P=0.033), whereas HDL-C was not. CONCLUSIONS HDL function, assessed by serum CUC level, rather than HDL-C level, adds risk stratification information among FH patients.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Atsushi Nohara
- Department of Genetics, Ishikawa Prefectural Central Hospital
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation
| | | | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation
| | - Manabu Nagao
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Ken-Ichi Hirata
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | | |
Collapse
|
6
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff MJ, Ronda N. ATP-binding cassette G1 membrane transporter-mediated cholesterol efflux capacity influences coronary atherosclerosis and cardiovascular risk in Rheumatoid Arthritis. J Autoimmun 2023; 136:103029. [PMID: 36996698 DOI: 10.1016/j.jaut.2023.103029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVES Cholesterol efflux capacity (CEC) measures the ability of high-density lipoprotein (HDL) to remove cholesterol from macrophages and reduce the lipid content of atherosclerotic plaques. CEC inversely associated with cardiovascular risk beyond HDL-cholesterol levels. CEC through the ATP-binding-cassette G1 (ABCG1) membrane transporter is impaired in rheumatoid arthritis (RA). We evaluated associations of ABCG1-CEC with coronary atherosclerosis, plaque progression and cardiovascular risk in RA. METHODS Coronary atherosclerosis (noncalcified, partially, fully-calcified, low-attenuation plaque) was assessed with computed tomography angiography in 140 patients and reevaluated in 99 after 6.9 ± 0.3 years. Cardiovascular events including acute coronary syndromes, stroke, cardiovascular death, claudication, revascularization and hospitalized heart failure were recorded. ABCG1-CEC was measured in Chinese hamster ovary cells as percentage of effluxed over total intracellular cholesterol. RESULTS ABCG1-CEC inversely associated with extensive atherosclerosis (≥5 plaques) (adjusted odds ratio 0.50 [95% CI 0.28-0.88]), numbers of partially-calcified (rate ratio [RR] 0.71 [0.53-0.94]) and low-attenuation plaques (RR 0.63 [0.43-0.91] per standard deviation increment). Higher ABCG1-CEC predicted fewer new partially-calcified plaques in patients with lower baseline and time-averaged CRP and fewer new noncalcified and calcified plaques in those receiving higher mean prednisone dose. ABCG1-CEC inversely associated with events in patients with but not without noncalcified plaques, with <median but not higher CRP and in prednisone users but not nonusers (p-for-interaction = 0.021, 0.033 and 0.008 respectively). CONCLUSION ABCG1-CEC inversely associated with plaque burden and vulnerability, and plaque progression conditionally on cumulative inflammation and corticosteroid dose. ABCG1-CEC inversely associated with events specifically in patients with noncalcified plaques, lower inflammation and in prednisone users.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA.
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Maria Pia Adorni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
7
|
Murakami K, Harada A, Toh R, Kubo T, Miwa K, Kim J, Kiriyama M, Iino T, Nishikawa Y, Uno SN, Akatsuchi K, Nagao M, Ishida T, Hirata KI. Fully automated immunoassay for cholesterol uptake capacity to assess high-density lipoprotein function and cardiovascular disease risk. Sci Rep 2023; 13:1899. [PMID: 36732570 PMCID: PMC9895055 DOI: 10.1038/s41598-023-28953-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
High-density lipoprotein (HDL) cholesterol efflux capacity (CEC), which is a conventional metric of HDL function, has been associated with coronary heart disease risk. However, the CEC assay requires cultured cells and takes several days to perform. We previously established a cell-free assay to evaluate cholesterol uptake capacity (CUC) as a novel measure of HDL functionality and demonstrated its utility in coronary risk stratification. To apply this concept clinically, we developed a rapid and sensitive assay system based on a chemiluminescent magnetic particle immunoassay. The system is fully automated, providing high reproducibility. Measurement of CUC in serum is completed within 20 min per sample without HDL isolation, a notably higher throughput than that of the conventional CEC assay. CUC decreased with myeloperoxidase-mediated oxidation of HDL or in the presence of N-ethylmaleimide, an inhibitor of lecithin: cholesterol acyltransferase (LCAT), whereas CUC was enhanced by the addition of recombinant LCAT. Furthermore, CUC correlated with CEC even after being normalized by ApoA1 concentration and was significantly associated with the requirement for revascularization due to the recurrence of coronary lesions. Therefore, our new assay system shows potential for the accurate measurement of CUC in serum and permits assessing cardiovascular health.
Collapse
Affiliation(s)
- Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan.
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Jeeeun Kim
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Youichi Nishikawa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shin-Nosuke Uno
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | | | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.,Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
8
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
9
|
Magnoni M, Andreini D, Pirillo A, Uboldi P, Latini R, Catapano AL, Maggioni AP, Norata GD. Predictive value of HDL function in patients with coronary artery disease: relationship with coronary plaque characteristics and clinical events. Ann Med 2022; 54:1036-1046. [PMID: 35438019 PMCID: PMC9090377 DOI: 10.1080/07853890.2022.2063374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND HDL is endowed with several metabolic, vascular, and immunoinflammatory protective functions. Among them, a key property is to promote reverse cholesterol transport from cells back to the liver. The aim of this study was to estimate the association of scavenger receptor class B type I (SR-BI)- and ATP binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux (the two major routes for cholesterol efflux to HDL) with the presence, extent, and severity of coronary artery disease (CAD), vascular wall remodelling processes, coronary plaque characteristics, and the incidence of myocardial infarction in the different subgroups of patients from the CAPIRE study. METHODS Patients (n = 525) from the CAPIRE study were divided into two groups: low-risk factors (RF), with 0-1 RF (n = 263), and multiple-RF, with ≥2 RFs; within each group, subjects were classified as no-CAD or CAD based on the segment involvement score (SIS) evaluated by coronary computed tomography angiography (SIS = 0 and SIS > 5, respectively). SR-BI- and ABCA1-mediated cholesterol efflux were measured using the plasma of all patients. RESULTS SR-BI-mediated cholesterol efflux was significantly reduced in patients with CAD in both the low-RF and multiple-RF groups, whereas ABCA1-mediated cholesterol efflux was similar among all groups. In CAD patients, multivariable analysis showed that SR-BI-mediated cholesterol efflux <25th percentile predicted cardiovascular outcome (odds ratio 4.1; 95% CI: 1.3-13.7; p = .019), whereas ABCA-1-mediated cholesterol efflux and HDL-C levels significantly did not. Despite this finding, reduced SR-BI-mediated cholesterol efflux was not associated with changes in high-risk plaque features or changes in the prevalence of elevated total, non-calcified, and low-attenuation plaque volume. CONCLUSION SR-BI-mediated cholesterol efflux capacity is lower in patients with diffuse coronary atherosclerosis. In addition, a lower SR-BI-mediated cholesterol efflux capacity is associated with the worst clinical outcomes in patients with CAD, independently of atherosclerotic plaque features. Key MessagesIncreased cholesterol efflux capacity, an estimate of HDL function, is associated with a reduced CVD risk, regardless of HDL-C levels.HDL-C levels are significantly lower in patients with CAD.Lower SR-BI-mediated cholesterol efflux capacity is observed in patients with diffuse coronary atherosclerosis and is associated with the worst clinical outcomes in patients with CAD, independently of atherosclerotic plaque features.
Collapse
Affiliation(s)
| | - Daniele Andreini
- IRCCS, Centro Cardiologico Monzino, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Angela Pirillo
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Balsamo, Italy.,IRCSS Multimedica, Milan, Italy
| | - Patrizia Uboldi
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alberico L Catapano
- IRCSS Multimedica, Milan, Italy.,Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Aldo P Maggioni
- Heart Care Foundation ANMCO Research Center, Florence, Italy
| | - Giuseppe D Norata
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Balsamo, Italy.,Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
10
|
Fujimoto D, Otake H, Kawamori H, Toba T, Nagao M, Nakano S, Tanimura K, Takahashi Y, Fukuyama Y, Kakizaki S, Nakamura K, Harada A, Murakami K, Iino T, Toh R, Hirata KI. Cholesterol uptake capacity: A new measure of high-density lipoprotein functionality as a predictor of subsequent revascularization in patients undergoing percutaneous coronary intervention. Atherosclerosis 2022; 345:44-50. [DOI: 10.1016/j.atherosclerosis.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
|
11
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Joshita S, Yamashita Y, Okamoto T, Usami Y, Sugiura A, Yamazaki T, Kakino A, Ota M, Sawamura T, Umemura T. Quantitative and qualitative lipid improvement with chronic hepatitis C virus eradication using direct-acting antivirals. Hepatol Res 2021; 51:758-766. [PMID: 33982310 DOI: 10.1111/hepr.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
AIM Direct-acting antivirals have revolutionized hepatitis C virus (HCV) therapy by providing a high sustained virological response (SVR) rate and subsequent favorable lipid increases. Proprotein convertase subtilisin-kexin like-9 (PCSK9) plays an important role in regulating quantitative lipid levels. This study examined the interactions between quantitative PCSK9 and lipid changes, as well as qualitative lipid changes in terms of lectin-like oxidized low-density lipoprotein (LDL) receptor-1 ligand containing apolipoprotein B (LAB) and high-density lipoprotein (HDL) cholesterol uptake capacity (HDL-CUC). METHODS Patients with chronic HCV infection (N = 231) who achieved an SVR by direct-acting antivirals without lipid-lowering therapy were included for comparisons of PCSK9, LAB, HDL-CUC, and other clinical indices between pretreatment and SVR12 time points. RESULTS LDL (LDL) cholesterol and HDL cholesterol levels were quantitatively increased at SVR12, along with higher PCSK9 (all p < 0.0001). PCSK9 was significantly correlated with LDL cholesterol (r = 0.244, p = 0.0003) and apolipoprotein B (r = 0.222, p = 0.0009) at SVR12. Regarding qualitative LDL changes, LAB was significantly decreased and LAB/LDL cholesterol and LAB/apolipoprotein B proportions were improved at SVR12 (all p < 0.0001). In terms of qualitative HDL changes, HDL-CUC was significantly ameliorated, along with HDL-CUC/HDL cholesterol, HDL-CUC/ apolipoprotein A1, and HDL-CUC/ apolipoprotein A2 at SVR12 (all p < 0.0001). CONCLUSIONS HCV eradication by direct-acting antivirals may produce quantitative lipid profile changes, along with PCSK9 production recovery in addition to qualitative lipid improvement, which possibly confers the additional secondary benefits of atherosclerosis improvement and cardiovascular disease event reduction.
Collapse
Affiliation(s)
- Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|