1
|
Li W, Zhu H, Liu J, Tian H, Li J, Wang L. Characteristics of MRI‑based vertebral bone quality scores in elderly patients with vertebral fragility fractures. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:2588-2593. [PMID: 37133764 DOI: 10.1007/s00586-023-07744-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE To explore the characteristics of vertebral bone quality (VBQ) scores in patients with vertebral fragility fractures, including VBQ score and single-level VBQ score, and evaluate their effectiveness as predictors. METHODS The VBQ scores were measured using T1-weighted MRI images. VBQ scores were compared in patients with different times of previous fragility fractures. In addition, patients with fractures were matched for age and sex with patients without fractures, and VBQ scores were compared between the two groups. Finally, the predictive efficiency of VBQ scores for vertebral fragility fractures was analyzed by the receiver-operator curve (ROC). RESULTS The average VBQ score and single-level VBQ score in patients with fractures were 3.48 ± 0.56 and 3.60 ± 0.60 and no difference among patients with different times of previous fractures. As for the age- and sex-matched patients, fracture patients had higher VBQ scores (VBQ score: 3.48 ± 0.56 vs. 2.88 ± 0.40, p < 0.001; single-level VBQ score: 3.60 ± 0.60 vs. 2.95 ± 0.44, p < 0.001). The AUCs using the VBQ score and single-level VBQ score to predict fragility fractures were 0.815 and 0.817, respectively. The optimal thresholds of the VBQ score and single-level VBQ score for predicting fragility fractures were 3.22 and 3.16, respectively. CONCLUSION MRI‑based VBQ scores are important predictors of vertebral fragility fracture but have no predictive value for the recurrence of fractures in patients with a history of fragility fractures. The VBQ score of 3.22 and single-level VBQ score of 3.16 are optimal thresholds that can be used when using lumbar MRI scans to identify individuals at high risk for fragility fractures.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Houze Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Jia Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Street, Shijiazhuang, 050051, Hebei, People's Republic of China.
- The Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
2
|
Parker E, Khayrullin A, Kent A, Mendhe B, Youssef El Baradie KB, Yu K, Pihkala J, Liu Y, McGee-Lawrence M, Johnson M, Chen J, Hamrick M. Hindlimb Immobilization Increases IL-1β and Cdkn2a Expression in Skeletal Muscle Fibro-Adipogenic Progenitor Cells: A Link Between Senescence and Muscle Disuse Atrophy. Front Cell Dev Biol 2022; 9:790437. [PMID: 35047502 PMCID: PMC8762295 DOI: 10.3389/fcell.2021.790437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Loss of muscle mass and strength contributes to decreased independence and an increased risk for morbidity and mortality. A better understanding of the cellular and molecular mechanisms underlying muscle atrophy therefore has significant clinical and therapeutic implications. Fibro-adipogenic progenitors (FAPs) are a skeletal muscle resident stem cell population that have recently been shown to play vital roles in muscle regeneration and muscle hypertrophy; however, the role that these cells play in muscle disuse atrophy is not well understood. We investigated the role of FAPs in disuse atrophy in vivo utilizing a 2-week single hindlimb immobilization model. RNA-seq was performed on FAPs isolated from the immobilized and non-immobilized limb. The RNAseq data show that IL-1β is significantly upregulated in FAPs following 2 weeks of immobilization, which we confirmed using droplet-digital PCR (ddPCR). We further validated the RNA-seq and ddPCR data from muscle in situ using RNAscope technology. IL-1β is recognized as a key component of the senescence-associated secretory phenotype, or SASP. We then tested the hypothesis that FAPs from the immobilized limb would show elevated senescence measured by cyclin-dependent kinase inhibitor 2A (Cdkn2a) expression as a senescence marker. The ddPCR and RNAscope data both revealed increased Cdkn2a expression in FAPs with immobilization. These data suggest that the gene expression profile of FAPs is significantly altered with disuse, and that disuse itself may drive senescence in FAPs further contributing to muscle atrophy.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Khayrullin
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Kent
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Khairat Bahgat Youssef El Baradie
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jeanene Pihkala
- Flow Cytometry Core Facility Research Laboratory Director, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|