1
|
Parsaei M, Dashtkoohi M, Haddadi M, Rashidian P, Mansouri Z, Hantoushzadeh S. The association of serum total bile acid levels with gestational diabetes mellitus: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2024; 24:744. [PMID: 39533227 PMCID: PMC11559172 DOI: 10.1186/s12884-024-06954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Given the high prevalence of gestational diabetes mellitus and its significant impact on maternal and neonatal health, identifying reliable biomarkers for prediction and diagnosis is essential. The increased incidence of gestational diabetes mellitus among patients with intrahepatic cholestasis of pregnancy suggests a possible association between serum total bile acid levels and gestational diabetes mellitus. This study evaluated the relationship between total bile acid levels and gestational diabetes mellitus incidence. METHODS A systematic search was performed on February 19, 2024, for studies examining the association between total bile acid levels and gestational diabetes mellitus incidence in both the general pregnant population and patients diagnosed with intrahepatic cholestasis of pregnancy. Meta-analyses were conducted to compare pooled total bile acid levels between patients with and without gestational diabetes mellitus, as well as to assess gestational diabetes mellitus prevalence in patients with mild (10 ≤ total bile acid < 40 µmol/L) vs. moderate-to-severe intrahepatic cholestasis of pregnancy (total bile acid ≥ 40 µmol/L). RESULTS 15 observational studies involving 7,238 pregnant women were systematically reviewed. Our meta-analysis found significantly higher serum total bile acid levels in women diagnosed with gestational diabetes mellitus compared to controls in the general population (Hedge's g = 0.29 [0.03,0.54]). However, subgroup analysis indicated that total bile acid levels were only significantly higher in patients measured earlier in pregnancy, before the gestational diabetes mellitus diagnosis, compared to healthy controls (Hedge's g = 0.48 [0.33,0.64]), while no significant difference in total bile acid levels was observed when measurements were taken after the gestational diabetes mellitus diagnosis (Hedge's g = 0.00 [-0.26,0.27]). Additionally, we found that the prevalence of gestational diabetes mellitus was significantly lower in patients with mild intrahepatic cholestasis of pregnancy compared to those with moderate-to-severe intrahepatic cholestasis of pregnancy (Log odds ratio=-0.56 [-0.95,-0.17]). CONCLUSIONS This study highlights a complex relationship between serum total bile acid levels and gestational diabetes mellitus incidence, influenced by the timing of measurement. Elevated total bile acid levels early in pregnancy may predict gestational diabetes mellitus, but its diagnostic value may decline later in pregnancy. TRIAL REGISTRATION The review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) on 3/3/2024 under CRD42024516164.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Breastfeeding Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadese Dashtkoohi
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haddadi
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Rashidian
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Mansouri
- Department of Obstetrics and Gynecology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang L, Chen Y, Ji H, Zhang X, Zhou Y, Li J, Wang Y, Xie Z, Yuan W, Liang H, Miao M. Per- and Poly-fluoroalkyl Substances and Bile Acid Profiles in Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15869-15881. [PMID: 37821457 DOI: 10.1021/acs.est.3c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alterations in bile acid (BA) profiles are closely associated with adverse outcomes in pregnant women and their offspring and may be one potential pathway underlying the related metabolic effects of per- and poly-fluoroalkyl substances (PFAS) exposure. However, evidence of associations between PFAS exposure and BA profiles in pregnant women is scarce. This study examined the associations of individual PFAS and PFAS mixture with BA profiles of pregnant women. We obtained quantitative data on the plasma concentrations of 13 PFAS and 15 BAs in 645 pregnant women from the Jiashan birth cohort. In Bayesian kernel machine regression models, the PFAS mixture was associated with increased plasma CA, TCA, TCDCA, and GLCA levels but with decreased GCA and LCA concentrations. Furthermore, the PFAS mixture was associated with increased concentrations of total BAs and the secondary/primary BA ratio but with decreased conjugated/unconjugated and glycine/taurine-conjugated BA ratios. PFHxS, PFUdA, PFOS, PFNA, and PFDA were the dominant contributors. The results of the linear regression analysis of individual PFAS were generally similar. Our findings provide the first epidemiological evidence for the associations of a PFAS mixture with BA profiles in pregnant women and may provide explanatory insights into the biological pathways underlying the related metabolic effects of PFAS exposure.
Collapse
Affiliation(s)
- Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jianhui Li
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Hospital of SIPPR, Shanghai 200032, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| |
Collapse
|
3
|
Dai M, Luo L, Xie C, Chen Z, Zhang M, Xie Y, Shang X, Shen X, Tian K, Zhou Y. Single and Joint Associations of Polycyclic Aromatic Hydrocarbon Exposure with Liver Function during Early Pregnancy. TOXICS 2023; 11:863. [PMID: 37888713 PMCID: PMC10610734 DOI: 10.3390/toxics11100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
The individual and combined associations of polycyclic aromatic hydrocarbons (PAHs) metabolites on liver function during pregnancy are still lacking. We aimed to explore the connection between urinary PAH metabolites and liver function in early pregnant women in southwest China based on the Zunyi birth cohort. Ten urinary PAH metabolites and five liver function parameters during early pregnancy were measured. The associations of single PAHs with parameters of liver function were assessed using multiple linear regression. A Bayesian kernel machine regression (BKMR) model was used to evaluate the joint associations of the PAH mixture with outcomes. We found that each 1% increment of urinary 2-hydroxyphenanthrene (2-OH-PHE) was associated with 3.36% (95% CI: 0.40%, 6.40%) higher alanine aminotransferase (ALT) and 2.22% (95% CI: 0.80%, 3.67%) higher aspartate aminotransferase (AST). Each 1% increment in 1-hydroxy-phenanthrene (1-OH-PHE) was significantly associated with 7.04% (95% CI: 1.61%, 12.75%) increased total bile acid (TBA). Additionally, there was a significant positive linear trend between 2-OH-PHE and AST and 1-OH-PHE and TBA. BKMR also showed a significant positive association of PAH mixture with AST. Our results indicate that PAH metabolites were associated with increased parameters of liver function among early pregnant women. Early pregnant women should pay more attention to the adverse relationships between PAHs and liver function parameters to prevent environment-related adverse perinatal outcomes.
Collapse
Affiliation(s)
- Mi Dai
- The Third Affiliated Hospital, Zunyi Medical University, Zunyi 563000, China
| | - Lei Luo
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Caiyan Xie
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Zhongbao Chen
- Renhuai Center for Disease Control and Prevention, Zunyi 563000, China
| | - Mingzhe Zhang
- Reproductive Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Maternal & Child Health and Exposure Science, Guizhou Higher Education Institutes, School of Public Health, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H, Kusuma WA. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:8544-8560. [PMID: 36300505 DOI: 10.1080/07391102.2022.2135597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Curculigo spp. is a herb that is commonly used in Indonesia to treat diabetes mellitus (DM) . The main active components of Curculigo spp. were identified through our previous metabolomic study and online database platform. However, the biological mechanisms underlying Curculigo spp. activity in treating DM remain unclear. Therefore, in this study, a network pharmacology was used to explore the active compounds of Curculigo spp. and their potential molecular mechanisms for treating DM. Oral bioavailability and drug-likeness from the compounds of Curculigo spp. were screened using Lipinski's rule of five, BBB, HIA + and Caco-2 permeability criteria. A network of compound-target-disease-pathway was then constructed using Cytoscape. The highest degree compounds and targets were then confirmed by molecular docking and molecular dynamics (MD) simulations. The human body can absorb 33 compounds derived from Curculigo spp. In addition, 58 nodes and 62 edges generated a network analysis with the DM target. The highest degree of the compound-target-disease pathway was for orcinol glucoside, AKR1B1, autoimmune diabetes, bile acid and bile salt metabolism. Furthermore, the computational docking method on Curculigo spp. compounds with the highest degree revealed that orcinol glucoside interacted with PTPN1 through a hydrogen bond and resulted in a binding energy of -7.2 kcal mol-1. Through hydrogen bonds, orcinol glucoside in PTPN1 regulates multiple signaling pathways via the adherens junction pathway, which may play a therapeutic role in DM (type 2 diabetes: obesity). In addition, MD simulation confirmed that orcinol glucoside, is suitable for DM treatment by interacting with PTPN1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, Indonesia
| | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | | | - Hamim Hamim
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| |
Collapse
|