1
|
Huang M, Ma Y, Fan Q, Che S, Zhang J, Ding S, Zhu S, Li X. Effects of nanopolystyrene and/or phoxim exposure on digestive function of Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110102. [PMID: 39653099 DOI: 10.1016/j.cbpc.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Nanopolystyrene (NP) and phoxim (PHO) are pervasive environmental contaminants that pose a significant threat to the health of aquatic organisms, prompting widespread concern among researchers and the public alike. The hepatopancreas play important roles in the Chinese mitten crab (Eriocheir sinensis), such as digestion, absorption and detoxification. This study assessed the hepatopancreatic toxicity caused by the exposure of Eriocheir sinensis to environmentally relevant concentrations of NP and/or PHO. After a 21-day exposure period, NP (1.0 × 1010 particles/L) and PHO (24 μg/L) exposure resulted in reduced number of blister-like, resorptive, and fibrillar cells and an elevation in lipid droplets within the hepatopancreas compared to the control group. Furthermore, trypsin and lipase activity decreased, amylase activity increased, and a significantly decrease in the expression of digestion-related genes, including CHT, CarL, and CarB, suggested impairment in both digestive and metabolic functions. The marked upregulation of key genes, including PPARγ, GYK, PEPCK, and SCD, as well as key metabolites such as 4-methylzymosterol-carboxylate, zymosterone, lathosterol, 7-dehydro-desmosterol, vitamin D2, 24-methylene-cycloartanol, 5-dehydroepisterol, and sitosterol in the lipid metabolic pathway, showed that the peroxisome proliferator-activated receptor (PPAR) and steroid biosynthesis signaling pathways were highly affected by exposure to NP and/or PHO. These findings indicated that exposure to NP and/or PHO might adversely affect the hepatopancreatic physiological homeostasis in E. sinensis by causing tissue damage and interfering with digestive and metabolic functions. Our results provide ecotoxicological insights into the effects of nanopolystyrene and/or phoxim exposure on the digestive function of Eriocheir sinensis.
Collapse
Affiliation(s)
- Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianru Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shunli Che
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China
| | - Shuquan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China
| | - Shuren Zhu
- Shandong Freshwater Fisheries Research Institute, Jinan 250013, China.
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Milewska-Kobos E, Szczepanek-Parulska E, Marciniak M, Wrotkowska E, Cieślewicz M, Dobrowolska A, Ruchala M. Association among nesfatin-1, obesity category, presence of obesity-related complications, and eating patterns in patients with obesity: Results of a single endocrine centre observational study. Peptides 2025; 185:171355. [PMID: 39921103 DOI: 10.1016/j.peptides.2025.171355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Since its discovery, nesfatin-1 (N1) has been recognised as an anorexigenic agent potentially related to obesity pathogenesis and development, including its modulatory effect on the brain's reward system and eating behaviours. As the results from human studies examining the relation between N1 serum levels, body mass index (BMI), and metabolic status are scarce and inconclusive, we aimed to investigate the association between serum N1 levels and obesity categories, obesity-related complications, and disturbed eating behaviour. We studied 110 patients with obesity divided into obesity categories according to their BMI and metabolic status. N1 was measured in a fasting state (N10) and 2 h after a glucose load (N12) and correlated with anthropometric measurements, serum analysis, and the presence of selected obesity-related complications. Neither N10 nor N12 correlated significantly with obesity; however, N10 tended to be high in patients with a high BMI. A positive correlation was observed among N12, fat-free mass (p = 0.022), and muscle mass (p = 0.02). We found positive correlations between N10 and N12 with aspartate aminotransferase (p = 0.012 and p = 0.022, respectively) and alanine aminotransferase (p = 0.027 and p = 0.006, respectively). Patients with dyslipidaemia had significantly higher N10 (p = 0.03) and N12 (p = 0.049) levels. Neither N10 nor N12 correlated significantly with disturbed eating behaviour; however, low N10 levels were associated with a hedonic eating pattern (p = 0.03). N1 may be involved in the pathogenesis of obesity and obesity-related complications; however, owing to the complex mechanisms of its secretion and action, further clinical and experimental research is needed.
Collapse
Affiliation(s)
- Ewa Milewska-Kobos
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland.
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Martyna Marciniak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Maja Cieślewicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| |
Collapse
|
3
|
Zhu XX, Meng XY, Chen G, Su JB, Fu X, Xu AJ, Liu Y, Hou XH, Qiu HB, Sun QY, Hu JY, Lv ZL, Sun HJ, Jiang HB, Han ZJ, Zhu J, Lu QB. Nesfatin-1 enhances vascular smooth muscle calcification through facilitating BMP-2 osteogenic signaling. Cell Commun Signal 2024; 22:488. [PMID: 39394127 PMCID: PMC11468037 DOI: 10.1186/s12964-024-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Physiology, Eberhard-Karls-University of Tübingen, Tübingen University, Tübingen, 72076, Germany
| | - Xin-Yu Meng
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Guo Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jia-Bao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China
| | - Xiao Fu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - An-Jing Xu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiao-Hui Hou
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Hong-Bo Qiu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhuo-Lin Lv
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hai-Jian Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hai-Bin Jiang
- Department of Cardiology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Jian Zhu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
5
|
Wang M, Tong J, Zhu Q, Tang H, Tang L. Blood nesfatin-1 levels in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 14:1275753. [PMID: 38327900 PMCID: PMC10847586 DOI: 10.3389/fendo.2023.1275753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background Previous studies have investigated the relationship between nesfatin-1 level and polycystic ovary syndrome (PCOS). However, these studies have produced conflicting results. Thus, in this meta-analysis, we aimed to clarify the association between blood nesfatin-1 levels and PCOS, and the ability of nesfatin-1 as a biomarker in PCOS. Methods Meta-analysis was performed using STATA 12.0 software. We computed standard mean difference (SMD) and 95% confidence interval (CI) regarding the comparison of blood nesfatin-1 in patients with PCOS and controls. Results The present meta-analysis showed no significant difference in blood nesfatin-1 level between patients with PCOS and controls with a random effects model (SMD = 0.03; 95%CI: -0.71, 0.77; I2 = 97.1%, p value for Q test < 0.001). Subgroup analysis for different ethnicities reported no significant difference in blood nesfatin-1 level between patients with PCOS and controls in both Caucasian and Asian populations. Subgroup analysis for different sample types reported no significant difference in serum nesfatin-1 level between patients with PCOS and controls. Subgroup studies reported no significant difference in blood nesfatin-1 level between PCOS and controls in both obese and non-obese populations. Conclusion In conclusion, there is no significant relationship between blood nesfatin-1 levels and PCOS.
Collapse
Affiliation(s)
| | | | | | | | - Lisha Tang
- *Correspondence: Lisha Tang, ; Huaiyun Tang,
| |
Collapse
|
6
|
Jayamurali D, Ravishankar N, Manoharan N, Parasuraman R, Jayashankar SK, Govindarajulu SN. Neuropeptide Network of Polycystic Ovary Syndrome - A Review. Protein Pept Lett 2024; 31:667-680. [PMID: 39313871 DOI: 10.2174/0109298665309949240822105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS), the ubiquitous reproductive disorder, has been documented as highly prevalent (6-9%) in India. 10% of women globally are predicted to have the disease. The highly mutable endocrinopathy, with differential clinical criteria for each diagnosis of PCOS, can mask the severity of the syndrome by influencing the incidence and occurrence of PCOS. AREA COVERED When there is a solid theoretical hypothesis between the neuroendocrine origin and ovarian origin of PCOS, recent evidence supports the neuroendocrine derivation of the pathology. It is considered of neuroendocrine basis - as it controls the ovarian axis and acts as a delicate target because it possesses receptors for various gonadal hormones, neurotransmitters & neuropeptides. Can these neuroendocrine alterations, variations in central brain circuits, and neuropeptide dysregulation be the tie that would link the pathophysiology of the disorder, the occurrence of all the 1˚ and 2˚ symptoms like polycystic ovaries, hyperandrogenism, obesity, insulin resistance, etc., in PCOS? CONCLUSION This review anticipates providing a comprehensive overview of how neuropeptides such as Kisspeptin, Neurokinin B, Dynorphin A, β-Endorphin, Nesfatin, Neuropeptide Y, Phoenixin, Leptin, Ghrelin, Orexin, and Neudesin influence PCOS, the understanding of which may help to establish potential drug candidates against precise targets in these central circuits.
Collapse
Affiliation(s)
- Dheepthi Jayamurali
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Nivetha Ravishankar
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Nivedita Manoharan
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Rajeshwari Parasuraman
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Sri Kameshwaran Jayashankar
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Sathya Narayanan Govindarajulu
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| |
Collapse
|
7
|
Zhou S, Nao J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem Res 2024; 49:38-51. [PMID: 37740893 DOI: 10.1007/s11064-023-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
9
|
Borovyk KM, Kadykova OI, Ryndina NG, Babadzhan VD, Yermak OS. NESFATIN-1 ACTIVITY IN THE BLOOD SERUM IN PATIENTS WITH CHRONIC HEART FAILURE OF ISCHEMIC ORIGIN AGAINST THE BACKGROUND OF TYPE 2 DIABETES MELLITUS AND OBESITY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1141-1145. [PMID: 37364064 DOI: 10.36740/wlek202305201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The aim: To study the nesfatin-1 activity in the blood serum of patients with chronic heart failure (CHF) of ischemic origin against the background of such metabolic disorders as type 2 diabetes mellitus (T2DM) and obesity. PATIENTS AND METHODS Materials and methods: 154 patients with CHF were examined, and divided into 4 groups, according to the presence of metabolic disorders. Group 1 included patients with CHF on the background of coronary heart disease (CHD) and T2DM and obesity (n=42). The second group consisted of patients with heart failure on the background of CHD with concomitant T2DM (n=46), the third group - with concomitant obesity (n=36), the fourth group was formed from patients with signs of heart failure of ischemic origin without metabolic disorders (n=30). The control group (CG) included 30 practically healthy persons of comparable age. RESULTS Results: The mean level of serum nesfatin-1 was 1.64±0.27 ng/mL in the СHF group, 0.342±0.19 ng/mL in the CHF + T2DM + obesity group, 1.06±0.36 ng/ mL in the obese + CHF group, 0.96±0.27 ng/mL in the CHF + T2DM group and 2.98±0.38 ng/mL in the CG. Significant correlation was found between the serum nesfatin-1 level and BMI (r=-0.34, p<0.05), HOMA (r=-0.54, p<0.05), insulin (r=-0.41, p<0.05). No significant correlation was found between the serum nesfatin-1 level and blood glucose level (r=0.13, p=0.65). CONCLUSION Conclusions: Thus, nesfatin-1 may play a significant role in the pathogenesis of both weight-related abnormalities and type 2 diabetes mellitus in patients with chronic heart failure of ischemic origin.
Collapse
|
10
|
Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int J Mol Sci 2022; 23:ijms232314982. [PMID: 36499312 PMCID: PMC9740598 DOI: 10.3390/ijms232314982] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Adipokines are currently widely studied cellular signaling proteins produced by adipose tissue and involved in various processes, including inflammation; energy and appetite modulation; lipid and glucose metabolism; insulin sensitivity; endothelial cell functioning; angiogenesis; the regulation of blood pressure; and hemostasis. The current review attempted to highlight the key functions of adipokines in the inflammatory mechanisms of obesity, its complications, and its associated diseases. An extensive search for materials on the role of adipokines in the pathogenesis of obesity was conducted online using the PubMed and Scopus databases until October 2022.
Collapse
Affiliation(s)
- Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Correspondence:
| | | | | | - Yurgita R. Varaeva
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Medical Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
11
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
12
|
Li Y, De J, Jiang Q, Yang Y, Xu W, Du X, Zhao Y. Comparison of lipid metabolism between broodstock and hybrid offspring in the hepatopancreas of juvenile shrimp (Macrobrachium nipponense): Response to chronic ammonia stress. Anim Genet 2022; 53:393-404. [PMID: 35307863 DOI: 10.1111/age.13194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Ammonia nitrogen is a major pollutant that causes great physiological harm to crustaceans in culture. In this study, we conducted a 28 day chronic ammonia nitrogen stress experiment with broodstock populations (Dianshan, DS) and hybrid offspring populations (DS ♀ × CD (Changjiang ♂ × Dongting ♀), SCD) exposed to 0, 1 and 10 mg/L of ammonia concentrations. A 28 day feeding trial and chronic ammonia nitrogen stress were used to investigate the effects on the growth performance, histological structure and lipid metabolism of juvenile shrimp, Macrobrachium nipponense. Our results indicated that survival rates in the SCD groups were significantly higher than those in the DS groups, whereas weight and length gain rates were not significantly different between the groups (p > 0.05). Histological structure results showed that the number of vacuoles in the DS group was significantly higher than that in the SCD group and hepatopancreas cell structures were disrupted in the ammonia treatment groups. The results of oil red staining showed that the number of lipid droplets increased significantly with the increase in ammonia concentration. As the ammonia concentration increased, fatty acid contents, lipid enzyme activities and lipid metabolism-related gene expression all tended to rise. In conclusion, ammonia nitrogen exposure caused damage to the hepatopancreas structure of juvenile shrimp and disturbed the lipid metabolism of the hepatopancreas. In addition, the SCD population had stronger stress resistance than the DS population when subjected to the same concentration of ammonia nitrogen stress.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ji De
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| |
Collapse
|