1
|
Song J, Wang H, Gao X, Yang F, Zhu X, Qiao G, Gan T, Tao J. The serum hepcidin and the hepcidin/ferritin ratio in NAFLD: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:62. [PMID: 39915727 PMCID: PMC11804044 DOI: 10.1186/s12876-025-03620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver diseases characterized by hepatic steatosis exceeding 5% in the absence of alcohol and other liver-damaging factors. Clinical studies have identified a potential link between abnormal iron metabolism and the high incidence of NAFLD; however, the results from clinical trials remain inconsistent. This meta-analysis aims to compare serum hepcidin levels and the hepcidin/ferritin ratio between adults with NAFLD and those without to explore their potential relationship with NAFLD. METHODS A systematic search was conducted across the Web of Science platform, Cochrane, Scopus, Embase, and PubMed databases from their inception until December 18, 2024. The analysis primarily focused on serum hepcidin levels and the hepcidin/ferritin ratio. Observational studies comparing serum hepcidin levels and the hepcidin/ferritin ratio between individuals with NAFLD and control groups were included. A random-effects model was employed to calculate effect estimates, and outcomes were reported as standardized mean differences (SMD) with 95% confidence intervals (95% CI). RESULTS Following the systematic review, a total of 19 studies, comprising 2216 patients and 2125 controls, were included. The findings revealed a statistically significant difference in both hepcidin levels (SMD = 1.03, 95% CI: 0.49 to 1.56, p < 0.001) and the hepcidin/ferritin ratio (SMD = -1.13, 95% CI: -1.79 to -0.46, p < 0.001) between NAFLD and controls. Significant heterogeneity was observed across studies for both hepcidin (I² = 98.2%) and the hepcidin/ferritin ratio (I² = 93.3%), and the limited number of studies on hepcidin/ferritin were acknowledged as key limitations. Subgroup analysis revealed that patients with obesity exhibited higher levels of hepcidin (SMD = 1.12, 95% CI: 0.40 to 1.97) than overweight (SMD = 0.88, 95% CI: 0.05 to 1.72). Meta-regression analysis identified the hepcidin measurement method (p < 0.01), male-to-female ratio (p < 0.01), and study quality (p < 0.01) as significant moderators of the observed heterogeneity. CONCLUSION This meta-analysis revealed a significant association between hepcidin levels, the hepcidin/ferritin ratio and NAFLD in adults. Further investigations are needed to fully elucidate the role of these variables in iron metabolism and their potential impact on the diagnosis, prevention, and management of NAFLD.
Collapse
Affiliation(s)
- Jingmin Song
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Heqing Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaolian Gao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Fen Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinhong Zhu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Guiyuan Qiao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Ting Gan
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Junxiu Tao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China.
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
| |
Collapse
|
2
|
Xu Y, Zeng Q, Zhang A. Assessing the mechanisms and adjunctive therapy for arsenic-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1197-1209. [PMID: 37902164 DOI: 10.1002/tox.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Environmental arsenic exposure is a significant global public health concern. Previous studies have demonstrated the association between arsenic-induced liver injury and oxidative stress as well as ferroptosis. However, the knowledge of the interactions among these mechanisms remains limited. Moreover, there is a lack of research on potential therapeutic interventions for liver injury resulting from arsenic exposure. To address these limitations, we established a rat model with liver injury caused by arsenic exposure and investigated the impact of the nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4) signaling pathway and ferroptosis on arsenic-induced liver injury. Our findings revealed that arsenic increased Nrf2 expression and decreased GPx4 expression in the rat liver. This was accompanied by a substantial generation of reactive oxygen species and disruption of the antioxidant defense system, ultimately promoting liver injury through ferroptosis. Subsequently, we conducted intervention experiments using Rosa roxburghii Tratt (RRT) in rats exposed to arsenic. The results showed that the detrimental effects mentioned earlier were partially alleviated following RRT intervention. This study offers preliminary evidence that persistent activation of Nrf2 by arsenic triggers an adaptive antioxidant response, leading to liver injury through the promotion of ferroptosis. Additionally, we discovered that RRT inhibits Nrf2-mediated adaptive antioxidant responses by reducing hepatic ferroptosis, thereby mitigating liver injury caused by arsenic exposure in rats. Our study contributes to a deeper understanding of the molecular mechanisms underlying liver injury resulting from arsenic exposure. Furthermore, our findings may facilitate the identification of a potential edible and medicinal plant extracts that could be utilized to develop a more effective adjunctive treatment approach.
Collapse
Affiliation(s)
- Yuyan Xu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Słomka A, Pokrzywa A, Strzała D, Kubiaczyk M, Wesolowska O, Denkiewicz K, Styczyński J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers (Basel) 2024; 16:332. [PMID: 38254820 PMCID: PMC10814117 DOI: 10.3390/cancers16020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Iron overload emerges as a serious complication in myelodysplastic syndromes (MDS), particularly associated with frequent transfusions during the course of the disease. The discovery and description of hepcidin's mechanisms of action have contributed to a deeper understanding of iron metabolism. The existing literature reports a potential role of hepcidin in MDS, yet these data are fragmented and presented in an unstructured, somewhat chaotic manner. Hence, to address the existing data, we performed a systematic review of observational studies examining hepcidin levels in MDS. An extensive review of three bibliographic databases (Pubmed, Web of Science, and Scopus) enabled us to identify 12 observational studies. These studies focused primarily on adult patients with low-risk MDS who underwent transfusions and chelation therapy. An in-depth analysis of these manuscripts led to four main conclusions: (1) although high serum hepcidin levels are associated with MDS, most studies generally have not found a significant difference in these levels between patients and healthy individuals; (2) serum hepcidin levels are specific to MDS type; (3) serum hepcidin levels in MDS are strongly associated with transfusions and the genetic status of patients; and (4) high-risk MDS is associated with high serum hepcidin levels. While we have furnished a comprehensive summary of the significance of hepcidin in MDS, there are still gaps that future research should address. This pertains primarily to the capacity of hepcidin in predicting adverse outcomes for MDS patients and evaluating the efficacy of chelation therapy or the need for transfusion.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Anna Pokrzywa
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Dominika Strzała
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Maja Kubiaczyk
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Rah B, Farhat NM, Hamad M, Muhammad JS. JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med 2023; 23:3147-3157. [PMID: 36976378 DOI: 10.1007/s10238-023-01047-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Iron metabolism plays a crucial role in the development and progression of hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Iron is an essential micronutrient that is involved in many physiological processes, including oxygen transport, DNA synthesis, and cellular growth and differentiation. However, excessive iron accumulation in the liver has been linked to oxidative stress, inflammation, and DNA damage, which can increase the risk of HCC. Studies have shown that iron overload is common in patients with HCC and that it is associated with a poor prognosis and reduced survival rates. Various iron metabolism-related proteins and signaling pathways such as the JAK/STAT pathway are dysregulated in HCC. Moreover, reduced hepcidin expression was reported to promote HCC in a JAK/STAT pathway-dependent manner. Therefore, it is important to understand the crosstalk between iron metabolism and the JAK/STAT pathway to prevent or treat iron overload in HCC. Iron chelators can bind to iron and remove it from the body, but its effect on JAK/STAT pathway is unclear. Also, HCC can be targeted by using the JAK/STAT pathway inhibitors, but their effect on hepatic iron metabolism is not known. In this review, for the first time, we focus on the role of the JAK/STAT signaling pathway in regulating cellular iron metabolism and its association with the development of HCC. We also discuss novel pharmacological agents and their therapeutic potential in manipulating iron metabolism and JAK/STAT signaling in HCC.
Collapse
Affiliation(s)
- Bilal Rah
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada Mazen Farhat
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Jibran Sualeh Muhammad
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Zhang Y, Meng Y, Chen M, Baral K, Fu Y, Yang Y, Cao L, Zhao M. Correlation between the systemic immune-inflammation indicator (SII) and serum ferritin in US adults: a cross-sectional study based on NHANES 2015-2018. Ann Med 2023; 55:2275148. [PMID: 37883981 PMCID: PMC10836291 DOI: 10.1080/07853890.2023.2275148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND & OBJECTIVE The systemic immune-inflammation indicator (SII) has been extensively employed in various diseases for course change, treatment efficacy, or prediction, whereas whether it applies to iron overload or iron deficiency remains unclear. This study aimed at investigating the correlation between SII and serum ferritin in people aged over 20 in the US. METHODS The measurements of the systemic immune-inflammation indicator (SII = platelet count × neutrophil-to-lymphocyte ratio) and serum ferritin of 5491 participants in the NHANES database served as the independent and dependent variables for the present cross-sectional study, respectively. Moreover, the correlation was investigated through and used multiple linear regression, smooth curve fitting, and threshold effect. RESULTS After rigorous inclusion and exclusion of 19,225 participants, a grand total of 5,491 participants conforming to the requirements were covered for relevant analysis. SII showed a significant negative correlation with serum ferritin in unregulated ([β=-0.05,p < 0.0001], micro-regulated [β=-0.02,p = 0.0010], and fully regulated models[β=-0.03,p < 0.0001]). In all participants, the negative correlation between SII and serum ferritin served as a non-linear relationship, as indicated by a smooth curve. Subsequently, in the subgroup analysis (stratified by age, sex, and race) fitted by the smooth curve, the above-mentioned negative correlation turned out to be nonlinear in the subgroups aged ≥40 years, Non-Hispanic Black and female, with U-shaped inflection points reaching 874.59, 930.22, and 615 for SII in the above-described subgroups, respectively. The correlation between SII and serum ferritin in Mexican American, Other Hispanic, Non-Hispanic White, and those aged less than 40 developed a linear negative correlation. CONCLUSIONS To the best of our knowledge, this study examined the correlation between SII and serum ferritin for the first time. The correlation between SII and serum ferritin was varied with sex, age and race in people aged 20 and older. Therefore, higher or lower SII may be relevant for identifying iron overload and iron deficiency.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Meng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Krishna Baral
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yicheng Fu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Cao
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Oppen K, Brede C, Skadberg Ø, Steinsvik T, Holter JC, Michelsen AE, Heggelund L. Hepcidin analysis in pneumonia: Comparison of immunoassay and LC-MS/MS. Ann Clin Biochem 2023; 60:298-305. [PMID: 36759502 PMCID: PMC10552342 DOI: 10.1177/00045632231159529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The iron-regulatory hormone hepcidin is a promising biomarker to differentiate anaemia of inflammation from iron deficiency. Plasma hepcidin concentrations increase substantially during inflammation, and the amount of smaller, non-biologically active isoforms of hepcidin increase in inflammatory conditions. These smaller isoforms are measured in some, but not all analytical methods. Thus, we evaluated the comparability of two analytical methods with different isoform selectivity during and after acute-phase pneumonia as a highly inflammatory model disease. METHODS Blood samples from a cohort of 267 hospitalized community-acquired pneumonia patients collected at admission and a 6-week follow-up were analysed. Hepcidin was measured in plasma by an immunoassay, which recognizes all hepcidin isoforms, and a liquid chromatography tandem mass spectrometry (LC-MS/MS), which selectively measures the bioactive hepcidin-25. Additionally, a subset of serum samples was analysed by LC-MS/MS. RESULTS Hepcidin measurements by immunoassay were higher compared with LC-MS/MS. The relative mean difference of hepcidin plasma concentrations between the two analytical methods was larger in admission samples than in follow-up samples (admission samples <200 ng/mL: 37%, admission samples >200 ng/mL: 78%, follow-up samples >10 ng/mL: 22%). During acute-phase pneumonia, serum concentrations were on average 22% lower than plasma concentrations when measured by LC-MS/MS. CONCLUSIONS Immunoassay measured higher hepcidin concentrations compared with LC-MS/MS, with more pronounced differences in high-concentration samples during acute-phase pneumonia. These findings should be considered in local method validations and in future harmonization and standardization optimization of hepcidin measurements.
Collapse
Affiliation(s)
- Kjersti Oppen
- Department of Laboratory Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway
| | - Øyvind Skadberg
- Department of Medical Biochemistry, Stavanger University Hospital, Norway
| | - Trude Steinsvik
- Department of Laboratory Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Norway
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Norway
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Norway
| |
Collapse
|
7
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
8
|
Czempik PF, Wiórek A. Comparison of Standard and New Iron Status Biomarkers: A Prospective Cohort Study in Sepsis Patients. Healthcare (Basel) 2023; 11:healthcare11070995. [PMID: 37046922 PMCID: PMC10093794 DOI: 10.3390/healthcare11070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Both iron deficiency (ID) and iron overload can have negative effects on the risk and course of infection. Therefore, the ability to accurately assess iron status in these patients is of the utmost importance. Systemic inflammation in sepsis patients affects the results of standard iron biomarkers and makes accurate diagnosis of ID problematic. The aim of our study was to analyze the association between widely available standard iron biomarkers and selected new iron biomarkers in various iron status subgroups among sepsis patients. Consecutive patients diagnosed with sepsis or septic shock and procalcitonin concentration > 0.5 ng/mL were enrolled. The following iron biomarkers were determined: iron, ferritin, transferrin, transferrin saturation, reticulocyte (Ret) number and percentage, Ret hemoglobin equivalent, Ret fluorescence subpopulations, and hepcidin concentration. The study group comprised 90 study subjects. There were 42 (47%) patients with normal iron status, 6 (6%) with ID without anemia, and 42 (47%) with ID anemia. No meaningful correlation exists between standard and new iron biomarkers in various iron status subgroups among sepsis patients. Therefore, standard iron biomarkers cannot be used to diagnose ID in this cohort.
Collapse
Affiliation(s)
- Piotr F. Czempik
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Transfusion Committee, University Clinical Centre of Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-32-7894201
| | - Agnieszka Wiórek
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Xu Y, Chen R, Zeng Q. Ferroptosis As a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements. Biol Trace Elem Res 2022:10.1007/s12011-022-03523-w. [PMID: 36575272 DOI: 10.1007/s12011-022-03523-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Ferroptosis is a unique form of programmed cell death driven by iron-dependent phospholipid peroxidation that was proposed in recent years. It plays an important role in processes of various trace element-related diseases and is regulated by redox homeostasis and various cellular metabolic pathways (iron, amino acids, lipids, sugars), as well as disease-related signaling pathways. Some limited pioneering studies have demonstrated ferroptosis as a mechanism for the health effects of essential trace elements and potentially toxic trace elements, with crosstalk among them. The aim of this review is to bring together research articles and identify key direct and indirect evidence regarding essential trace elements (iron, selenium, zinc, copper, chromium, manganese) and potentially toxic trace elements (arsenic, aluminum, mercury) and their possible roles in ferroptosis. Our review may help determine future research priorities and opportunities.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| | - Ruobi Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Wang X, Huang J, Wei H, Wu L, Xing H, Zhu J, Kan C. A novel Fe3+ fluorescent probe based on rhodamine derivatives and its application in biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|