1
|
Liu G, Wang Z, Li X, Yu P, Ji W, Wu L, Jiang H, Xu S, Liu J. Protective effects of Gumibao recipe on glucocorticoid-included bone microcirculatory endothelial cell injury and the underlying mechanism. Int Immunopharmacol 2024; 142:112989. [PMID: 39217879 DOI: 10.1016/j.intimp.2024.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate the protective effects of Gumibao recipe on glucocorticoid-included bone microcirculatory endothelial cell (BMEC) injury, and elucidate the possible underlying mechanism. METHODS BMECs were treated with different concentrations of hydrocortisone at different time points, and the viability as well as migration of BMECs were evaluated; furthermore, the release of LDH, levels of VEGF, PAI-1, t-PA, and the content of NO by BMECs have been evaluated by commercially available kits; moreover, the expressions of eNOS, p-PI3K, p-Akt and p-mTOR in BMECs were examined by WB methods. Next, hydrocortisone treated BMECs were co-treated with Gumibao recipe, and the viability, migration and autophagy of BMECs were evaluated. RESULTS 0.2 mg/ml and 0.3 mg/ml hydrocortisone significantly decreased viability and migration ability of BMECs, and also impeded the endothelial function of BMECs by decreasing the levels of VEGF, t-PA, the content of NO, and increasing the level of PAI-1. Gumibao medicated serum markedly increased the viability and migration of BMECs, and also increased the levels of VEGF, t-PA, the content of NO, meanwhile decreased the level of PAI-1 in 0.3 mg/ml hydrocortisone treated BMECs; moreover, glucocorticoids inhibited the autophagy of BMECs, and Gumibao recipe significantly increased the autophagy of BMECs; meanwhile, autophagy inhibitor 3-MA partially blocked the protective effects of Gumibao recipe. Finally, gumibao recipe partially abrogated the inhibitory effects of hydrocortisone on the activation of PI3K/Akt/mTOR singling, and these effects were further counteracted by PI3K and mTOR inhibitor NVP-BEZ235. CONCLUSIONS We reported for the first time the protective effects of Gumibao recipe on glucocorticoid-included BMECs injury, and the possible underlying mechanism may be regulating the autophagy of BMECs via PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guanhong Liu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Zhiqiang Wang
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Xiaochun Li
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Pengfei Yu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Wanbo Ji
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Liming Wu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Hong Jiang
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Suliang Xu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Jintao Liu
- Orthopedics and Traumatology Department, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215000, China.
| |
Collapse
|
2
|
Lin T, Zhang W, He X, He M, Li Z, He W, Chen Z, Zhang Q, Wei Q. Lateral classification system predicts the collapse of JIC type C1 nontraumatic osteonecrosis of the femoral head: a retrospective study. BMC Musculoskelet Disord 2023; 24:757. [PMID: 37749534 PMCID: PMC10521389 DOI: 10.1186/s12891-023-06890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSES The aim of this study was to construct a lateral classification system for nontraumatic osteonecrosis of femoral head (NONFH) through three-dimensional reconstruction of the necrotic area to assist in evaluating the prognosis of patients with JIC type C1. METHODS Retrospective analysis of patients with JIC type C1 NONFH from January 2018 to December 2020. All patients were followed up for more than 3.5 years. The patients were divided into collapse group and non-collapse group according to whether the femoral head collapsed during the follow-up.Lateral classification system for femoral head necrosis is constructed through three-dimensional reconstruction of the necrotic area.Comparison of lateral classification system,midsagittal necrosis angle(MNA)and general data between the two groups.Furthermore, ROC curve analysis and survival analysis were performed. RESULTS 318 patients were included in this study.There was a significant difference between the two groups in the lateral classification system (P < 0.05). In addition, the MNA in the collapsed group was significantly greater than that in the non-collapse group(P < 0.05). As revealed by the results of ROC analysis, the cutoff point of MNA was 104.5° (P < 0.05).According to the survivorship analysis, the mean survival time of the hips of patients with MNA less than 104.5°was greater than that of patients with MNA over 104.5° (P < 0.05). The survival rates of 3.5 years femoral head were 45.8%, 33.7%, 14.8%, 93.0%, and 100% for lateral classification system 1, 2, 3, 4, and 5, respectively. CONCLUSION Necrosis involving the anterior aspect of the femoral head is an important risk factor for collapse. The Lateral classification system can effectively predict the femoral head collapse in JIC C1 type NONFH patients, supplementing the deficiency of JIC classification in evaluating the front of the femoral head.
Collapse
Affiliation(s)
- Tianye Lin
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wensheng Zhang
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiaoming He
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Mincong He
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Ziqi Li
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wei He
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zhenqiu Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qingwen Zhang
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qiushi Wei
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
3
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|