1
|
Chen CP. Prenatal diagnosis of a de novo 16p11.2 microduplication of 16p11.2 BP4-5 copy number variants in a fetus with apparently normal phenotype. Taiwan J Obstet Gynecol 2025; 64:540-541. [PMID: 40368529 DOI: 10.1016/j.tjog.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 05/16/2025] Open
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Yue F, Hao M, Jiang D, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with 16p11.2 microdeletion/microduplication. BMC Pregnancy Childbirth 2024; 24:494. [PMID: 39039444 PMCID: PMC11265082 DOI: 10.1186/s12884-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Chromosomal 16p11.2 deletions and duplications are genomic disorders which are characterized by neurobehavioral abnormalities, obesity, congenital abnormalities. However, the prenatal phenotypes associated with 16p11.2 copy number variations (CNVs) have not been well characterized. This study aimed to provide an elaborate summary of intrauterine phenotypic features for these genomic disorders. METHODS Twenty prenatal amniotic fluid samples diagnosed with 16p11.2 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed in parallel. The pregnancy outcomes and health conditions of all cases after birth were followed up. Meanwhile, we made a pooled analysis of the prenatal phenotypes in the published cases carrying 16p11.2 CNVs. RESULTS 20 fetuses (20/20,884, 0.10%) with 16p11.2 CNVs were identified: five had 16p11.2 BP2-BP3 deletions, 10 had 16p11.2 BP4-BP5 deletions and five had 16p11.2 BP4-BP5 duplications. Abnormal ultrasound findings were recorded in ten fetuses with 16p11.2 deletions, with various degrees of intrauterine phenotypic features observed. No ultrasound abnormalities were observed in any of the 16p11.2 duplications cases during the pregnancy period. Eleven cases with 16p11.2 deletions terminated their pregnancies. For 16p11.2 duplications, four cases gave birth to healthy neonates except for one case that was lost to follow-up. CONCLUSIONS Diverse prenatal phenotypes, ranging from normal to abnormal, were observed in cases with 16p11.2 CNVs. For 16p11.2 BP4-BP5 deletions, abnormalities of the vertebral column or ribs and thickened nuchal translucency were the most common structural and non-structural abnormalities, respectively. 16p11.2 BP2-BP3 deletions might be closely associated with fetal growth restriction and single umbilical artery. No characteristic ultrasound findings for 16p11.2 duplications have been observed to date. Given the variable expressivity and incomplete penetrance of 16p11.2 CNVs, long-term follow-up after birth should be conducted for these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Mengzhe Hao
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Dandan Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China.
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Huang Q, Zhang Y, Jing X, Li F, Qin J, Li F, Li D, Li R, Liao C. Association of prenatal thoracic ultrasound abnormalities with copy number variants at a single Chinese tertiary center. Int J Gynaecol Obstet 2024; 164:770-777. [PMID: 37565521 DOI: 10.1002/ijgo.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To systematically evaluate the association of prenatal thoracic ultrasound abnormalities with copy number variants (CNVs). METHODS Chromosomal microarray (CMA) data and clinical characteristics from fetuses with thoracic ultrasound abnormalities were retrieved and analyzed. RESULTS Thoracic ultrasound findings were mainly isolated except for fetal pleural effusion (FPE) and pulmonary hypoplasia. The diagnostic yield of CMA for thoracic anomaly was 9.66%, and FPE (17/68, 25%), pulmonary hypoplasia (1/8, 12.5%), and congenital diaphragmatic hernia (CDH) (6/79, 7.59%) indicated relatively high pathogenic/likely pathogenic (P/LP) CNV findings. The detection rate for P/LP CNVs was obviously increased in non-isolated thoracic anomalies (27.91% vs. 1.96%, P < 0.0001), non-isolated FPE (37.78% vs. 0%, P = 0.0007) and non-isolated congenital pulmonary airway malformation (CPAM) (27.27% vs. 0%, P < 0.0001), and significantly different among thoracic anomalies. Additionally, the rate of termination of pregnancy in cases with non-isolated thoracic anomalies (58.49% vs. 12.34%, P < 0.0001) and P/LP CNVs (85.71% vs. 24.15%, P < 0.0001) was obviously increased. CONCLUSION The present study expanded phenotype spectrums for particular recurrent CNVs. FPE, CDH, and pulmonary hypoplasia indicated relatively high P/LP CNV findings among common thoracic ultrasound abnormalities, CPAM associated with other ultrasound abnormalities increased the incidence of diagnostic CNVs, while bronchopulmonary sequestration might not be associated with positive CNVs. The present data recommended CMA application for cases with prenatal thoracic ultrasound abnormalities, especially non-isolated FPE, non-isolated CPAM, CDH, and pulmonary hypoplasia.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongling Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qin
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fatao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu L, Wang J, Liu X, Wang J, Chen L, Zhu H, Mai J, Hu T, Liu S. Prenatal prevalence and postnatal manifestations of 16p11.2 deletions: A new insights into neurodevelopmental disorders based on clinical investigations combined with multi-omics analysis. Clin Chim Acta 2024; 552:117671. [PMID: 37984529 DOI: 10.1016/j.cca.2023.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The 16p11.2 deletion is one of the most common genetic aetiologies of neurodevelopmental disorders (NDDs). The prenatal phenotype of 16p11.2 deletion and the potential mechanism associated with postnatal clinical manifestations were largely unknow. We revealed the developmental trajectories of 16p11.2 deletion from the prenatal to postnatal periods and to identify key signaling pathways and candidate genes contributing to neurodevelopmental abnormalities. METHODS In this 5-y retrospective cohort study, women with singleton pregnancies who underwent amniocentesis for chromosomal abnormalities were included. Test of copy-number variations (CNVs) involved single nucleotide polymorphism-array and CNV-seq was performed to detected 16p11.2 deletion. For infants born carrying the 16p11.2 deletion, neurological and intellectual evaluations using the Chinese version of the Gesell Development Scale. For patients observed to have vertebral malformations, Sanger sequencing for T-C-A haplotype of TBX6 was performed. For those infants with clinical manifestations, whole-exome sequencing was consecutively performed in trios to rule out single-gene diseases, and transcriptomics combined with untargeted metabolomics were performed. RESULTS The prevalence of 16p11.2 deletion was 0.063% (55/86,035) in the prenatal period. Up to 80% (20/25) of the 16p11.2 deletions were proven de novo by parental confirmation. Approximately half of 16p11.2 deletions (28/55) were detected with prenatal abnormal ultrasound findings. Vertebral malformations were identified as the most distinctive structural malformations and were enriched in fetuses with 16p11.2 deletions compared with controls (90.9‰ [5/55] vs. 8.4‰ [72/85,980]; P < 0.001). All 5 fetuses with vertebral malformations were confirmed to have the TBX6 haplotype of T-C-A. Overall, 47.6% (10/21) infants birthed were diagnosed with NDDs of different degrees. Language impairment was the predominant manifestation (7/10; 70.0%), followed by motor delay (5/10; 50%). Multi-omics analysis indicated that MAPK3 was the central hub of the differentially expressed gene (DEG) network. We firstly reported that histidine-associated metabolism may be the core metabolic pathway related to the 16p11.2 deletion. CONCLUSION We demonstrated the prenatal presentation, incomplete penetrance and variable expressivity of the 16p11.2 deletion. We identified vertebral malformations were the most distinctive prenatal phenotypes, and language impairment was the predominant postnatal manifestation. Most of the 16p11.2 deletion was de novo. Meanwhile, we suggested that MAPK3 and histidine-associated metabolism may contribute to neurodevelopmental abnormalities of 16p11.2 deletion.
Collapse
Affiliation(s)
- Lan Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Medical College, Tibet University, Lhasa, Tibet 850000, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Jiamin Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xijing Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Chen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingqun Mai
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Han JY, Cho YG, Jo DS, Park J. Diversity of Clinical and Molecular Characteristics in Korean Patients with 16p11.2 Microdeletion Syndrome. Int J Mol Sci 2023; 25:253. [PMID: 38203422 PMCID: PMC10779371 DOI: 10.3390/ijms25010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals with identical 16p11.2 microdeletions. An analysis with the CytoScan Dx Assay was conducted on a GeneChip System 3000Dx, and the sample signals were then compared to a reference set using the Chromosome Analysis Suite software version 3.1. Ten patients from six separate families were identified with 16p11.2 microdeletions. Nine breakpoints (BPs) 4-5 and one BP2-5 of the 16p11.2 microdeletion were identified. All patients with 16p11.2 microdeletions exhibited developmental delay and/or intellectual disability. Sixty percent of patients presented with neonatal hypotonia, but muscle weakness improved with age. Benign infantile epilepsy manifested between the ages of 7-10 months (a median of 8 months) in six patients (60%). Vertebral dysplasia was observed in two patients (20%), and mild scoliosis was noted in three patients. Sixty percent of patients were overweight. We present six unrelated Korean families, among which identical 16p11.2 microdeletions resulted in diverse developmental trajectories and discordant phenotypes. The clinical variability and incomplete penetrance observed in individuals with 16p11.2 microdeletions remain unclear, posing challenges to accurate clinical interpretation and diagnosis.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Dae Sun Jo
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Chung WK, Herrera FF. Health supervision for children and adolescents with 16p11.2 deletion syndrome. Cold Spring Harb Mol Case Stud 2023; 9:a006316. [PMID: 38050025 PMCID: PMC10815286 DOI: 10.1101/mcs.a006316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Rare genetic conditions are challenging for the primary care provider to manage without proper guidelines. This clinical review is designed to assist the pediatrician, family physician, or internist in the primary care setting to manage the complexities of 16p11.2 deletion syndrome. A multidisciplinary medical home with the primary care provider leading the care and armed with up-to-date guidelines will prove most helpful to the rare genetic patient population. A special focus on technology to fill gaps in deficits, review of case studies on novel medical treatments, and involvement with the educational system for advocacy with an emphasis on celebrating diversity will serve the rare genetic syndrome population well.
Collapse
Affiliation(s)
- Wendy K Chung
- Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Pan L, Wu J, Liang D, Yuan J, Wang J, Shen Y, Lu J, Xia A, Li J, Wu L. Association analysis between chromosomal abnormalities and fetal ultrasonographic soft markers based on 15,263 fetuses. Am J Obstet Gynecol MFM 2023; 5:101072. [PMID: 37393030 DOI: 10.1016/j.ajogmf.2023.101072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Soft markers are common prenatal ultrasonographic findings that indicate an increased risk for fetal aneuploidy. However, the association between soft markers and pathogenic or likely pathogenic copy number variations is still unclear, and clinicians lack clarity on which soft markers warrant a recommendation for invasive prenatal genetic testing of the fetus. OBJECTIVE This study aimed to provide guidance on ordering prenatal genetic testing for fetuses with different soft markers and to elucidate the association between specific types of chromosomal abnormalities and specific ultrasonographic soft markers. STUDY DESIGN Low-pass genome sequencing was performed for 15,263 fetuses, including 9123 with ultrasonographic soft markers and 6140 with normal ultrasonographic findings. The detection rate of pathogenic or likely pathogenic copy number variants among fetuses with various ultrasonographic soft markers were compared with that of fetuses with normal ultrasonography. The association of soft markers with aneuploidy and pathogenic or likely pathogenic copy number variants were investigated using Fisher exact tests with Bonferroni correction. RESULTS The detection rate of aneuploidy and pathogenic or likely pathogenic copy number variants was 3.04% (277/9123) and 3.40% (310/9123), respectively, in fetuses with ultrasonographic soft markers. An absent or a hypoplastic nasal bone was the soft marker in the second trimester with the highest diagnostic rate for aneuploidy of 5.22% (83/1591) among all isolated groups. Four types of isolated ultrasonographic soft markers, namely a thickened nuchal fold, single umbilical artery, mild ventriculomegaly, and absent or hypoplastic nasal bone, had higher diagnostic rates for pathogenic or likely pathogenic copy number variants (P<.05; odds ratio, 1.69-3.31). Furthermore, this study found that the 22q11.2 deletion was associated with an aberrant right subclavian artery, whereas the 16p13.11 deletion, 10q26.13-q26.3 deletion, and 8p23.3-p23.1 deletion were associated with a thickened nuchal fold, and the 16p11.2 deletion and 17p11.2 deletion were associated with mild ventriculomegaly (P<.05). CONCLUSION Ultrasonographic phenotype-based genetic testing should be considered in clinical consultations. Copy number variant analysis is recommended for fetuses with an isolated thickened nuchal fold, a single umbilical artery, mild ventriculomegaly, and an absent or a hypoplastic nasal bone. A comprehensive definition of genotype-phenotype correlations in aneuploidy and pathogenic or likely pathogenic copy number variants could provide better information for genetic counseling.
Collapse
Affiliation(s)
- Lijuan Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (Drs Pan, J Wu, Liang, and L Wu); Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China (Dr Pan)
| | - Jiayu Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (Drs Pan, J Wu, Liang, and L Wu)
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (Drs Pan, J Wu, Liang, and L Wu)
| | - Jing Yuan
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (Dr Yuan)
| | - Jue Wang
- Department of Obstetrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (Dr Wang)
| | - Yinchen Shen
- Department of Maternity Care, Nanning Maternity and Child Health Hospital, Nanning, Guangxi, China (Dr Shen)
| | - Junjie Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China (Dr Lu)
| | - Aihua Xia
- Department of Obstetrics, Beihai People's Hospital, Beihai, Guangxi, China (Dr Xia)
| | - Jinchen Li
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China (Dr Li).
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (Drs Pan, J Wu, Liang, and L Wu).
| |
Collapse
|