1
|
Wang Z, Zhu J, Xu M, Ma X, Shen M, Yan J, Gan G, Zhou X. Transplantation of exogenous mitochondria mitigates myocardial dysfunction after cardiac arrest. eLife 2025; 13:RP98554. [PMID: 40207621 PMCID: PMC11984951 DOI: 10.7554/elife.98554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The incidence of post-cardiac arrest myocardial dysfunction (PAMD) is high, and there is currently no effective treatment available. This study aims to investigate the protective effects of exogenous mitochondrial transplantation in Sprague-Dawley (SD) rats. Exogenous mitochondrial transplantation can enhance myocardial function and improve the survival rate. Mechanistic studies suggest that mitochondrial transplantation can limit impairment in mitochondrial morphology, augment the activity of mitochondrial complexes II and IV, and raise ATP level. As well, mitochondrial therapy ameliorated oxidative stress imbalance, reduced myocardial injury, and thus improved PAMD after cardiopulmonary resuscitation (CPR).
Collapse
Affiliation(s)
- Zhen Wang
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Jie Zhu
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Mengda Xu
- Department of Anesthesiology, General Hospital of Central Theater Command of PLAWuhanChina
| | - Xuyuan Ma
- Base of Central Theater Command of People's Liberation Army, Hubei University of MedicineWuhanChina
| | - Maozheng Shen
- Base of Central Theater Command of People's Liberation Army, Hubei University of MedicineWuhanChina
| | - Jingyu Yan
- Department of Anesthesiology, General Hospital of Central Theater Command of PLAWuhanChina
| | - Guosheng Gan
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
- Department of Anesthesiology, General Hospital of Central Theater Command of PLAWuhanChina
| | - Xiang Zhou
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
- Department of Anesthesiology, General Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
2
|
Annoni F, Gouvea Bogossian E, Peluso L, Su F, Moreau A, Nobile L, Casu SG, Sterchele ED, Calabro L, Salvagno M, Oddo M, Taccone FS. Ketone Bodies after Cardiac Arrest: A Narrative Review and the Rationale for Use. Cells 2024; 13:784. [PMID: 38727320 PMCID: PMC11083685 DOI: 10.3390/cells13090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fuhong Su
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Anthony Moreau
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Stefano Giuseppe Casu
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Lorenzo Calabro
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Mauro Oddo
- Medical Directorate for Research, Education and Innovation, Direction Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| |
Collapse
|
3
|
Hayashida K, Takegawa R, Endo Y, Yin T, Choudhary RC, Aoki T, Nishikimi M, Murao A, Nakamura E, Shoaib M, Kuschner C, Miyara SJ, Kim J, Shinozaki K, Wang P, Becker LB. Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med 2023; 21:56. [PMID: 36922820 PMCID: PMC10018842 DOI: 10.1186/s12916-023-02759-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.
Collapse
Affiliation(s)
- Kei Hayashida
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Cyrus Kuschner
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
4
|
Chandra Shekar K, Yannopoulos D, Kosmopoulos M, Riess ML. Differential Effects of Reperfusion on Cardiac Mitochondrial Subpopulations in a Preclinical Porcine Model of Acute Myocardial Infarction. Front Cell Dev Biol 2022; 10:843733. [PMID: 35356287 PMCID: PMC8959812 DOI: 10.3389/fcell.2022.843733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myocardial infarction (AMI) leads to localized cardiac ischemia and can be fatal if untreated. Despite being treatable, the threat of ischemia-reperfusion (IR) injury remains high. Mitochondria are central to both propagation and mitigation of IR injury, and cardiac mitochondria are categorized into two major subtypes-subsarcolemmal and interfibrillar mitochondria (SSM and IFM, respectively). We hypothesized that, in our pre-clinical porcine model of AMI, SSM and IFM are differentially affected by reperfusion. AMI was induced in female pigs by balloon occlusion of the left anterior descending artery for 45 min, followed by 4 h of reperfusion. At the end of reperfusion, animals were euthanized. Cardiac SSM and IFM from the affected ischemic area and a nearby non-ischemic area were isolated to compare mitochondrial function using substrates targeting mitochondrial electron transport chain complexes I and II. Despite detecting overall significant differences in mitochondrial function including yield, mitochondrial S3 and S4 respirations, and calcium retention, consistent individual functional differences in the two mitochondrial subpopulations were not observed, both between the two mitochondrial subtypes, as well as between the ischemic and non-ischemic tissue. Nonetheless, this study describes the mitochondrial subtype response within the initial few hours of reperfusion in a clinically relevant model of AMI, which provides valuable information needed to develop novel mitochondrially targeted therapies for AMI.
Collapse
Affiliation(s)
- Kadambari Chandra Shekar
- Integrative Biology and Physiology, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Demetris Yannopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Marinos Kosmopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Tan Y, Yu K, Liang L, Liu Y, Song F, Ge Q, Fang X, Yu T, Huang Z, Jiang L, Wang P. Sodium-Glucose Co-Transporter 2 Inhibition With Empagliflozin Improves Cardiac Function After Cardiac Arrest in Rats by Enhancing Mitochondrial Energy Metabolism. Front Pharmacol 2021; 12:758080. [PMID: 34712142 PMCID: PMC8546214 DOI: 10.3389/fphar.2021.758080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Empagliflozin is a newly developed antidiabetic drug to reduce hyperglycaemia by highly selective inhibition of sodium–glucose co-transporter 2. Hyperglycaemia is commonly seen in patients after cardiac arrest (CA) and is associated with worse outcomes. In this study, we examined the effects of empagliflozin on cardiac function in rats with myocardial dysfunction after CA. Non-diabetic male Sprague–Dawley rats underwent ventricular fibrillation to induce CA, or sham surgery. Rats received 10 mg/kg of empagliflozin or vehicle at 10 min after return of spontaneous circulation by intraperitoneal injection. Cardiac function was assessed by echocardiography, histological analysis, molecular markers of myocardial injury, oxidative stress, mitochondrial ultrastructural integrity and metabolism. We found that empagliflozin did not influence heart rate and blood pressure, but left ventricular function and survival time were significantly higher in the empagliflozin treated group compared to the group treated with vehicle. Empagliflozin also reduced myocardial fibrosis, serum cardiac troponin I levels and myocardial oxidative stress after CA. Moreover, empagliflozin maintained the structural integrity of myocardial mitochondria and increased mitochondrial activity after CA. In addition, empagliflozin increased circulating and myocardial ketone levels as well as heart β-hydroxy butyrate dehydrogenase 1 protein expression. Together, these metabolic changes were associated with an increase in cardiac energy metabolism. Therefore, empagliflozin favorably affected cardiac function in non-diabetic rats with acute myocardial dysfunction after CA, associated with reducing glucose levels and increasing ketone body oxidized metabolism. Our data suggest that empagliflozin might benefit patients with myocardial dysfunction after CA.
Collapse
Affiliation(s)
- Yunke Tan
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Kai Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yuanshan Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Senthil K, Morgan RW, Hefti MM, Karlsson M, Lautz AJ, Mavroudis CD, Ko T, Nadkarni VM, Ehinger J, Berg RA, Sutton RM, McGowan FX, Kilbaugh TJ. Haemodynamic-directed cardiopulmonary resuscitation promotes mitochondrial fusion and preservation of mitochondrial mass after successful resuscitation in a pediatric porcine model. Resusc Plus 2021; 6:100124. [PMID: 34223382 PMCID: PMC8244484 DOI: 10.1016/j.resplu.2021.100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
Objective Cerebral mitochondrial dysfunction is a key mediator of neurologic injury following cardiac arrest (CA) and is regulated by the balance of fusion and fission (mitochondrial dynamics). Under stress, fission can decrease mitochondrial mass and signal apoptosis, while fusion promotes oxidative phosphorylation efficiency. This study evaluates mitochondrial dynamics and content in brain tissue 24 h after CA between two cardiopulmonary resuscitation (CPR) strategies. Interventions Piglets (1 month), previously randomized to three groups: (1) Std-CPR (n = 5); (2) HD-CPR (n = 5; goal systolic blood pressure 90 mmHg, goal coronary perfusion pressure 20 mmHg); (3) Shams (n = 7). Std-CPR and HD-CPR groups underwent 7 min of asphyxia, 10 min of CPR, and standardized post-resuscitation care. Primary outcomes: (1) cerebral cortical mitochondrial protein expression for fusion (OPA1, OPA1 long to short chain ratio, MFN2) and fission (DRP1, FIS1), and (2) mitochondrial mass by citrate synthase activity. Secondary outcomes: (1) intra-arrest haemodynamics and (2) cerebral performance category (CPC) at 24 h. Results HD-CPR subjects had higher total OPA1 expression compared to Std-CPR (1.52; IQR 1.02-1.69 vs 0.67; IQR 0.54-0.88, p = 0.001) and higher OPA1 long to short chain ratio than both Std-CPR (0.63; IQR 0.46-0.92 vs 0.26; IQR 0.26-0.31, p = 0.016) and shams. Citrate synthase activity was lower in Std-CPR than sham (11.0; IQR 10.15-12.29 vs 13.4; IQR 12.28-15.66, p = 0.047), but preserved in HD-CPR. HD-CPR subjects had improved intra-arrest haemodynamics and CPC scores at 24 h compared to Std-CPR. Conclusions Following asphyxia-associated CA, HD-CPR exhibits increased pro-mitochondrial fusion protein expression, preservation of mitochondrial mass, improved haemodynamics and superior neurologic scoring compared to Std-CPR. Institutional protocol number IAC 16-001023.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Marco M Hefti
- University of Iowa, Division of Pathology, United States
| | | | - Andrew J Lautz
- Cincinnati Children's Hospital Medical Center, Division of Critical Care Medicine, United States
| | - Constantine D Mavroudis
- Department of Neurosurgery, Righospitalet, Copenhagen, Denmark.,Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Cardiothoracic Surgery, United States
| | - Tiffany Ko
- Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Neurology, United States
| | - Vinay M Nadkarni
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | | | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Robert M Sutton
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Francis X McGowan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| |
Collapse
|
7
|
Huang Y, Gao X, Zhou X, Zhang Y, Tan Z, Zhu S. Remote Ischemic Postconditioning Inhibited Mitophagy to Achieve Neuroprotective Effects in the Rat Model of Cardiac Arrest. Neurochem Res 2021; 46:573-583. [PMID: 33409854 DOI: 10.1007/s11064-020-03193-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Remote ischemic postconditioning (RI-postC) is an effective measure to improve nerve function after cardiac arrest. However, the brain protective mechanism of RI-postC has not been fully elucidated, and whether it is related to mitophagy is unclear. In this study, we used the rat model of cardiac arrest to study the effect of RI-postC on mitophagy and explore its possible signaling pathways. Rats were randomly divided into Sham group, CA/CPR group, Mdivi-1 group and RI-postC group. The animal model of cardiac arrest was established by asphyxia. RI-postC was performed by clamping and loosening the left femoral artery. Mdivi-1 was treated with a single intravenous injection. Levels of TOMM20, TIM23, Mfn1, PINK1 and parkin were detected by western blots. Mitochondrial membrane potential was measured by flow cytometry. Real-time PCR was used to detect relative mitochondrial DNA levels. The apoptosis of hippocampal neurons was detected by flow and TUNEL. In addition, Histopathological tests were performed. The results showed that RI-postC was similar to the mitophagy inhibitor Mdivi-1, which could inhibit the decrease of mitophagy-related protein level, improve mitochondrial membrane potential and up-regulate the ratio of mt-Atp6/Rpl13 after cardiopulmonary resuscitation (CPR). Furthermore, RI-postC could also reduce the rate of hippocampal nerve apoptosis and the damage of hippocampal neurons after CPR. Moreover, RI-postC and Mdivi-1 could reduce the protein levels of PINK1 and parkin in mitochondria after CPR, while increasing PINK1 levels in the cytoplasm. These findings suggested that RI-postC could inhibit the overactivation mitophagy through the PINK1/parkin signaling pathway, thus providing neuroprotective effects.
Collapse
Affiliation(s)
- Yang Huang
- The First School of Clinical Medical, Southern Medical University, Guangzhou, China
- Department of Thoracic Cardiovascular Surgery, General Hospital of Central Theater Command, Wuluo road, 627#, Wuhan, 430070, Hubei, China
| | - Xuhui Gao
- Department of Thoracic Cardiovascular Surgery, General Hospital of Central Theater Command, Wuluo road, 627#, Wuhan, 430070, Hubei, China
| | - Xiang Zhou
- Department of Anesthesiology, General Hospital of Central Theater Command, Wuhan, China
| | - Yu Zhang
- Department of Thoracic Cardiovascular Surgery, General Hospital of Central Theater Command, Wuluo road, 627#, Wuhan, 430070, Hubei, China
| | - ZhiTian Tan
- The First School of Clinical Medical, Southern Medical University, Guangzhou, China
- Department of Thoracic Cardiovascular Surgery, General Hospital of Central Theater Command, Wuluo road, 627#, Wuhan, 430070, Hubei, China
| | - ShuiBo Zhu
- The First School of Clinical Medical, Southern Medical University, Guangzhou, China.
- Department of Thoracic Cardiovascular Surgery, General Hospital of Central Theater Command, Wuluo road, 627#, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Shoaib M, Choudhary RC, Choi J, Kim N, Hayashida K, Yagi T, Yin T, Nishikimi M, Stevens JF, Becker LB, Kim J. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep 2020; 10:19707. [PMID: 33184308 PMCID: PMC7665036 DOI: 10.1038/s41598-020-76401-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of death and there is a necessity for animal models that accurately represent human injury severity. We evaluated a rat model of severe CA injury by comparing plasma metabolic alterations to human patients. Plasma was obtained from adult human control and CA patients post-resuscitation, and from male Sprague–Dawley rats at baseline and after 20 min CA followed by 30 min cardiopulmonary bypass resuscitation. An untargeted metabolomics evaluation using UPLC-QTOF-MS/MS was performed for plasma metabolome comparison. Here we show the metabolic commonality between humans and our severe injury rat model, highlighting significant metabolic dysfunction as seen by similar alterations in (1) TCA cycle metabolites, (2) tryptophan and kynurenic acid metabolites, and (3) acylcarnitine, fatty acid, and phospholipid metabolites. With substantial interspecies metabolic similarity in post-resuscitation plasma, our long duration CA rat model metabolically replicates human disease and is a suitable model for translational CA research.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.,Department of Emergency Medicine, Northwell Health, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA. .,Department of Emergency Medicine, Northwell Health, NY, USA.
| |
Collapse
|
9
|
Wu J, Li Y, Yang P, Huang Y, Lu S, Xu F. Novel Role of Carbon Monoxide in Improving Neurological Outcome After Cardiac Arrest in Aged Rats: Involvement of Inducing Mitochondrial Autophagy. J Am Heart Assoc 2020; 8:e011851. [PMID: 31030597 PMCID: PMC6512094 DOI: 10.1161/jaha.118.011851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Dysfunctional mitochondria are associated with neurological injury after cardiac arrest (CA). Although carbon monoxide (CO) has shown various potential therapeutic effects in preclinical tissue injury models, its mechanism of action in CA remains unclear. We sought to investigate the effects of a novel CO‐releasing molecule on cerebral mitochondrial dysfunction and neurological injury after CA. Methods and Results Male Sprague‐Dawley rats aged 20 to 22 months were subjected to 6‐minute asphyxia CA before receiving CO treatment. Survival, neurologic deficit scores, neuronal death, mitochondrial function, and autophagy were evaluated after the return of spontaneous circulation. Results showed that CO post‐treatment increased 3‐day survival rate from 25% to 70.83% and reduced neurologic deficit scores. CO also ameliorated CA‐induced neuronal apoptosis and necrosis in the cerebral cortex and improved cerebral mitochondrial function by reducing reactive oxygen species, reversing mitochondrial membrane potential depolarization, and preventing cytochrome C release. Furthermore, CO increased mitochondrial autophagy by inducing mitochondrial accumulation of PINK1 (PTEN‐induced putative kinase 1) and Parkin. Downregulation of PINK1 with genetic silencing siRNA abolished CO‐afforded mitochondrial autophagy. Conclusions Taken together, our results indicate, for the first time, that CO treatment confers neuroprotection against ischemic neurological injury after CA possibly by promoting mitochondrial autophagy.
Collapse
Affiliation(s)
- Jun Wu
- 1 Department of Ultrasonography Medicine The Affiliated Suzhou Hospital of Nanjing University of Chinese Medicine Suzhou China
| | - Yi Li
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Peng Yang
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Yaping Huang
- 3 Department of Pathology The Affiliated Suzhou Hospital of Nanjing University of Chinese Medicine Suzhou China
| | - Shiqi Lu
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Feng Xu
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
10
|
Mitophagy in the Hippocampus Is Excessive Activated After Cardiac Arrest and Cardiopulmonary Resuscitation. Neurochem Res 2019; 45:322-330. [PMID: 31773373 DOI: 10.1007/s11064-019-02916-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
This study examined the activation of mitophagy following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) and the relationship between the change with time and apoptosis. MAIN METHODS The male Sprague-Dawley rats were randomized into four groups: Sham group, CPR24h group, CPR48h group, CPR72h group. The rat model of cardiac arrest was established by asphyxiation. We employed western blot to analyze the levels of mitophagy related proteins of hippocampus, JC-1 to detect mitochondrial membrane potential (MMP) and flow cytometry to measure the rate of apoptosis of hippocampal neurons. Moreover, we also intuitively observed the occurrence of mitophagy through electron microscopy. KEY FINDINGS The results showed that the levels of TOMM20 and Tim23 protein were significantly decreased after CPR, which were more remarkable following 72 h of CPR. However, the protein levels of dynamin related protein 1 (Drp1) and cytochrome C (Cyt-c) were strongly up-regulated after CPR. Meanwhile, the hippocampal MMP decreased gradually with time after CPR. Furthermore, we more intuitively verified the activation of mitophagy through electron microscopy. In addition, the rats of apoptosis rate of hippocampus after CPR were significantly increased, which were gradually enhanced over time from 24 h until at least 72 h following CPR. SIGNIFICANCE with the enhancement of mitophagy, the apoptosis of hippocampal neurons was gradually enhanced, which suggested mitophagy may be excessive activated and aggravating brain damage after CA and CPR.
Collapse
|
11
|
Activation of Pyruvate Dehydrogenase Activity by Dichloroacetate Improves Survival and Neurologic Outcomes After Cardiac Arrest in Rats. Shock 2019; 49:704-711. [PMID: 28846566 DOI: 10.1097/shk.0000000000000971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
No pharmacological interventions are currently available to provide neuroprotection for patients suffering from cardiac arrest. Dichloroacetate (DCA) is a pyruvate dehydrogenase kinase inhibitor, which activates pyruvate dehydrogenase (PDH), and increases cell adenosine triphosphate (ATP) production by promoting influx of pyruvate into the Krebs cycle. In this study, we investigated the effects of DCA on post-resuscitation neurological injury in an asphyxial cardiac arrest rat model. Asphyxial cardiac arrest was established by endotracheal tube clamping. A total of 111 rats were randomized into three groups: Sham group, Control group, and DCA intervention group. Animals in DCA intervention group were intraperitoneally administered DCA with a loading dose of 80 mg/kg at 15 min after return of spontaneous circulation (ROSC), whereas rats in the Control group received equivalent volume of saline. DCA treatment increased 3-day survival time, and reduced neurologic deficit scores at 24, 48, and 72 h after ROSC. It also attenuated cellular apoptosis and neuronal damage in the hippocampal cornuammonis one region by hematoxylin-eosin staining and TdT-mediated dUTP nick-end labeling assay. In addition, DCA reduced the messenger RNA expression of tumor necrosis factor α and interleukin 1β in brain hippocampus and cortex after ROSC. Furthermore, DCA treatment significantly increased ATP production, PDH activity, and decreased blood glucose, lactate, and brain pyruvate levels after ROSC. Our results suggested that DCA has neuroprotective effects on brain injury after cardiac arrest, and its salutary effects were associated with an increase of mitochondrial energy metabolism in the brain through activation of PDH activity.
Collapse
|
12
|
Sodium-Hydrogen Exchanger Isoform-1 Inhibition: A Promising Pharmacological Intervention for Resuscitation from Cardiac Arrest. Molecules 2019; 24:molecules24091765. [PMID: 31067690 PMCID: PMC6538998 DOI: 10.3390/molecules24091765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/14/2023] Open
Abstract
Out-of-hospital sudden cardiac arrest is a major public health problem with an overall survival of less than 5%. Upon cardiac arrest, cessation of coronary blood flow rapidly leads to intense myocardial ischemia and activation of the sarcolemmal Na+-H+ exchanger isoform-1 (NHE-1). NHE-1 activation drives Na+ into cardiomyocytes in exchange for H+ with its exchange rate intensified upon reperfusion during the resuscitation effort. Na+ accumulates in the cytosol driving Ca2+ entry through the Na+-Ca2+ exchanger, eventually causing cytosolic and mitochondrial Ca2+ overload and worsening myocardial injury by compromising mitochondrial bioenergetic function. We have reported clinically relevant myocardial effects elicited by NHE-1 inhibitors given during resuscitation in animal models of ventricular fibrillation (VF). These effects include: (a) preservation of left ventricular distensibility enabling hemodynamically more effective chest compressions, (b) return of cardiac activity with greater electrical stability reducing post-resuscitation episodes of VF, (c) less post-resuscitation myocardial dysfunction, and (d) attenuation of adverse myocardial effects of epinephrine; all contributing to improved survival in animal models. Mechanistically, NHE-1 inhibition reduces adverse effects stemming from Na+–driven cytosolic and mitochondrial Ca2+ overload. We believe the preclinical work herein discussed provides a persuasive rationale for examining the potential role of NHE-1 inhibitors for cardiac resuscitation in humans.
Collapse
|
13
|
Gazmuri RJ, Karmazyn M. Letter by Gazmuri and Karmazyn Regarding Article, "Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure". Circulation 2019; 137:1979-1980. [PMID: 29712702 DOI: 10.1161/circulationaha.117.032824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raúl J Gazmuri
- Resuscitation Institute and Department of Clinical Sciences, Rosalind Franklin University of Medicine and Science, and Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, IL (R.J.G.)
| | | |
Collapse
|
14
|
Mavroudis CD, Karlsson M, Ko T, Hefti M, Gentile JI, Morgan RW, Plyler R, Mensah-Brown KG, Boorady TW, Melchior RW, Rosenthal TM, Shade BC, Schiavo KL, Nicolson SC, Spray TL, Sutton RM, Berg RA, Licht DJ, Gaynor JW, Kilbaugh TJ. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Eur J Cardiothorac Surg 2018; 54:162-168. [PMID: 29346537 PMCID: PMC7448940 DOI: 10.1093/ejcts/ezx467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/15/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Controversy remains regarding the use of deep hypothermic circulatory arrest (DHCA) in neonatal cardiac surgery. Alterations in cerebral mitochondrial bioenergetics are thought to contribute to ischaemia-reperfusion injury in DHCA. The purpose of this study was to compare cerebral mitochondrial bioenergetics for DHCA with deep hypothermic continuous perfusion using a neonatal swine model. METHODS Twenty-four piglets (mean weight 3.8 kg) were placed on cardiopulmonary bypass (CPB): 10 underwent 40-min DHCA, following cooling to 18°C, 10 underwent 40 min DHCA and 10 remained at deep hypothermia for 40 min; animals were subsequently rewarmed to normothermia. 4 remained on normothermic CPB throughout. Fresh brain tissue was harvested while on CPB and assessed for mitochondrial respiration and reactive oxygen species generation. Cerebral microdialysis samples were collected throughout the analysis. RESULTS DHCA animals had significantly decreased mitochondrial complex I respiration, maximal oxidative phosphorylation, respiratory control ratio and significantly increased mitochondrial reactive oxygen species (P < 0.05 for all). DHCA animals also had significantly increased cerebral microdialysis indicators of cerebral ischaemia (lactate/pyruvate ratio) and neuronal death (glycerol) during and after rewarming. CONCLUSIONS DHCA is associated with disruption of mitochondrial bioenergetics compared with deep hypothermic continuous perfusion. Preserving mitochondrial health may mitigate brain injury in cardiac surgical patients. Further studies are needed to better understand the mechanisms of neurological injury in neonatal cardiac surgery and correlate mitochondrial dysfunction with neurological outcomes.
Collapse
Affiliation(s)
- Constantine D Mavroudis
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael Karlsson
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Ko
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Javier I Gentile
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan W Morgan
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross Plyler
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kobina G Mensah-Brown
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy W Boorady
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon C Shade
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kellie L Schiavo
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan C Nicolson
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas L Spray
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert M Sutton
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert A Berg
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wang P, Li Y, Yang Z, Yu T, Zheng G, Fang X, Huang Z, Jiang L, Tang W. Inhibition of dynamin-related protein 1 has neuroprotective effect comparable with therapeutic hypothermia in a rat model of cardiac arrest. Transl Res 2018; 194:68-78. [PMID: 29351829 DOI: 10.1016/j.trsl.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Dynamin-related protein 1 (Drp1) regulates mitochondrial fission, it has been proven that inhibition of Drp1 by mdivi-1 improves survival and attenuates cerebral ischemic injury after cardiac arrest. In this study, we compared the effects of Drp1 inhibition with therapeutic hypothermia on post-resuscitation neurologic injury in a rat model of cardiac arrest. Rats were randomized into 4 groups: mdivi-1 treatment group (n = 39), hypothermic group (n = 38), normothermic group (n = 41), and sham group (n = 12). The rats in the mdivi-1 treatment group were received intravenously 1.2 mg/kg of mdivi-1 at 1 minute after the return of spontaneous circulation (ROSC). In rats in hypothermia group, rapid cooling was initiated at 5 minutes after resuscitation, and the core temperature was maintained to 33 ± 0.5°C for 2 hours. The results showed that both Drp1 inhibition and therapeutic hypothermia increased 3-day survival time (all P <0.05) and improved neurologic function up to 72 hours post cardiac arrest. In addition, both Drp1 inhibition and therapeutic hypothermia decreased cell injury, apoptosis in hippocampal cornu ammonis 1 region and brain mitochondrial dysfunction including adenosine triphosphate production, reactive oxygen species and mitochondrial membrane potential after cardiac arrest. Moreover, therapeutic hypothermia decreased mitochondrial Drp1 expression and mitochondrial fission after cardiac arrest. In conclusion, inhibition of Drp1 has a similar effect to therapeutic hypothermia on neurologic outcome after resuscitation in this cardiac arrest rat model, and the neuroprotective effects of therapeutic hypothermia are associated with inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zheng
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| | - Wanchun Tang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China; Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
16
|
Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation 2017; 116:8-15. [PMID: 28408349 PMCID: PMC5552370 DOI: 10.1016/j.resuscitation.2017.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). METHODS A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. RESULTS Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. CONCLUSIONS Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs.
Collapse
Affiliation(s)
- Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Adamantios Tsangaris
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | | | - Matthew D Olson
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey I Dikalov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
An Update on Cardiopulmonary Resuscitation in Children. CURRENT ANESTHESIOLOGY REPORTS 2017. [DOI: 10.1007/s40140-017-0216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Lamoureux L, Radhakrishnan J, Mason TG, Kraut JA, Gazmuri RJ. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation. J Appl Physiol (1985) 2016; 121:1160-1168. [PMID: 27633736 DOI: 10.1152/japplphysiol.00336.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO2 accumulation-and activation of the Na+-H+ exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO2-consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na+ entry via NHE-1 with consequent Ca2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeejabai Radhakrishnan
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Thomas G Mason
- Department of Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Jeffrey A Kraut
- Medical and Research Services, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.,Membrane Biology Laboratory, University of California, Los Angeles, Los Angeles, California; and.,Division of Nephrology, Veterans Affairs Greater Los Angeles Healthcare System and David Geffen School of Medicine, Los Angeles, California
| | - Raúl J Gazmuri
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; .,Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois
| |
Collapse
|
19
|
Assessment of muscle tissue oxygen saturation after out-of-hospital cardiac arrest. J Crit Care 2015; 30:1184-9. [DOI: 10.1016/j.jcrc.2015.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/01/2015] [Accepted: 07/12/2015] [Indexed: 11/21/2022]
|
20
|
Lundin A, Djärv T, Engdahl J, Hollenberg J, Nordberg P, Ravn-Fischer A, Ringh M, Rysz S, Svensson L, Herlitz J, Lundgren P. Drug therapy in cardiac arrest: a review of the literature. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:54-75. [DOI: 10.1093/ehjcvp/pvv047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
|
21
|
Kilbaugh TJ, Sutton RM, Karlsson M, Hansson MJ, Naim MY, Morgan RW, Bratinov G, Lampe JW, Nadkarni VM, Becker LB, Margulies SS, Berg RA. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. J Am Heart Assoc 2015; 4:e002232. [PMID: 26370446 PMCID: PMC4599507 DOI: 10.1161/jaha.115.002232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. METHODS AND RESULTS After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure-targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI + CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I- and complex II-driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI + CII), as well as a 30% reduction in citrate synthase activity (P<0.04). CONCLUSIONS Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal-directed neuroresuscitation after CA. IACUC Protocol: IAC 13-001023.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Joshua W Lampe
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Lance B Becker
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA (S.S.M.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| |
Collapse
|
22
|
Varvarousi G, Stefaniotou A, Varvaroussis D, Xanthos T. Glucocorticoids as an emerging pharmacologic agent for cardiopulmonary resuscitation. Cardiovasc Drugs Ther 2015; 28:477-88. [PMID: 25163464 PMCID: PMC4163188 DOI: 10.1007/s10557-014-6547-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although cardiac arrest (CA) constitutes a major health problem with dismal prognosis, no specific drug therapy has been shown to improve survival to hospital discharge. CA causes adrenal insufficiency which is associated with poor outcome and increased mortality. Adrenal insufficiency may manifest as an inability to increase cortisol secretion during and after cardiopulmonary resuscitation (CPR). Several studies suggest that glucocorticoids during and after CPR seem to confer benefits with respect to return of spontaneous circulation (ROSC) rates and long term survival. They have beneficial hemodynamic effects that may favor their use during CPR and in the early post-resuscitation period. Moreover, they have anti-inflammatory and anti-apoptotic properties that improve organ function by reducing ischemia/reperfusion (I/R) injury. However, glucocorticoid supplementation has shown conflicting results with regard to survival to hospital discharge and neurological outcome. The purpose of this article is to review the pathophysiology of hypothalamic-pituitary-adrenal (HPA) axis during CPR. Furthermore, this article reviews the effects of glucocorticoids use during CRP and the post-resuscitation phase.
Collapse
Affiliation(s)
- Giolanda Varvarousi
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece,
| | | | | | | |
Collapse
|
23
|
Ayub A, Poulose N, Raju R. Resveratrol Improves Survival and Prolongs Life Following Hemorrhagic Shock. Mol Med 2015; 21:305-12. [PMID: 25879628 DOI: 10.2119/molmed.2015.00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
Resveratrol has been shown to potentiate mitochondrial function and extend longevity; however, there is no evidence to support whether resveratrol can improve survival or prolong life following hemorrhagic shock. We sought to determine whether (a) resveratrol can improve survival following hemorrhage and resuscitation and (b) prolong life in the absence of resuscitation. Using a hemorrhagic injury (HI) model in the rat, we describe for the first time that the naturally occurring small molecule, resveratrol, may be an effective adjunct to resuscitation fluid. In a series of three sets of experiments we show that resveratrol administration during resuscitation improves survival following HI (p < 0.05), resveratrol and its synthetic mimic SRT1720 can significantly prolong life in the absence of resuscitation fluid (<30 min versus up to 4 h; p < 0.05), and resveratrol as well as SRT1720 restores left ventricular function following HI. We also found significant changes in the expression level of mitochondria-related transcription factors Ppar-α and Tfam, as well as Pgc-1α in the left ventricular tissues of rats subjected to HI and treated with resveratrol. The results indicate that resveratrol is a strong candidate adjunct to resuscitation following severe hemorrhage.
Collapse
Affiliation(s)
- Ahmar Ayub
- Department of Laboratory Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ninu Poulose
- Department of Laboratory Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Raghavan Raju
- Department of Laboratory Sciences, Georgia Regents University, Augusta, Georgia, United States of America.,Department of Surgery, Georgia Regents University, Augusta, Georgia, United States of America.,Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
24
|
Miao Y, Edelheit A, Velmurugan S, Borovnik-Lesjak V, Radhakrishnan J, Gazmuri RJ. Estrogen fails to facilitate resuscitation from ventricular fibrillation in male rats. Am J Transl Res 2015; 7:522-534. [PMID: 26045892 PMCID: PMC4448192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Administration of 17β-estradiol has been shown to exert myocardial protective effects in hemorrhagic shock. We hypothesized that similar protective effects could help improve resuscitation from cardiac arrest. Three series of 18, 40, and 12 rats each, underwent ventricular fibrillation for 8 minutes followed by 8 minutes of chest compression and delivery of electrical shocks. In series-1, rats were randomized 1:1 to receive a bolus dose of 17β-estradiol (1 mg/kg) or 0.9% NaCl before chest compression; in series-2, rats were randomized 1:1:1:1 to receive a continuous infusion of 0.9% NaCl or a 17β-estradiol solution designed to attain a plasma level of 10(0), 10(2), or 10(4) nM during chest compression; and in series-3, rats were randomized 1:1 to receive a continuous infusion of 17β-estradiol to attain a plasma level of 10(2) nM or 0.9% NaCl during chest compression, providing inotropic support during the post-resuscitation interval using dobutamine infusion. 17β-estradiol failed to facilitate resuscitation in each of the 3 series. In series-1 and series-2, resuscitability and short-term survival was reduced in 17β-estradiol groups attaining statistical significance in series-2 when the three 17β-estradiol groups were combined (p = 0.035). In series-3, all rats were resuscitated and survived for 180 minutes aided by dobutamine which partially reversed post-resuscitation myocardial dysfunction but without additional benefits on myocardial function in the 17β-estradiol group. The present study failed to support a beneficial effect of 17β-estradiol for resuscitation from cardiac arrest and raised the possibility of detrimental cardiac effects compromising initial resuscitability and subsequent survival in a male rat model of ventricular fibrillation and closed chest resuscitation.
Collapse
Affiliation(s)
- Yang Miao
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
| | - Ari Edelheit
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
| | - Sathya Velmurugan
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
| | - Vesna Borovnik-Lesjak
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
| | - Jeejabai Radhakrishnan
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
| | - Raúl J Gazmuri
- Resuscitation Institute at Rosalind Franklin University of Medicine and ScienceNorth Chicago, Illinois, USA
- Critical Care Medicine, Captain James A. Lovell Federal Health Care CenterNorth Chicago, Illinois, USA
| |
Collapse
|
25
|
Sharp WW. Dynamin-related protein 1 as a therapeutic target in cardiac arrest. J Mol Med (Berl) 2015; 93:243-52. [PMID: 25659608 DOI: 10.1007/s00109-015-1257-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 12/23/2022]
Abstract
Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10 % of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed.
Collapse
Affiliation(s)
- Willard W Sharp
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave, MC 5068, Chicago, IL, 60637, USA,
| |
Collapse
|
26
|
Zhang Y, Li CS, Wu CJ, Yang J, Hang CC. Neuroprotective effect of Shenfu Injection () following cardiac arrest in pig correlates with improved mitochondrial function and cerebral glucose uptake. Chin J Integr Med 2014; 20:835-43. [PMID: 25411019 DOI: 10.1007/s11655-014-1890-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To test whether Shenfu Injection (, SFI) might attenuate the impact of cerebral energy dysfunction after resuscitation in a pig model of cardiac arrest (CA). METHODS Thirty-four Wuzhishan miniature inbred pigs were randomly divided into three groups: the SFI group (n=12), the saline group (SA group, n=12), and the sham-operated group (sham group, n=10). Following successful return of spontaneous circulation (ROSC) from 8-min untreated ventricular fibrillation, animals received a continuous infusion of either SFI (0.2 mL/min) or saline for 6 h. Cerebral performance category score was evaluated at 24 and 48 h after ROSC, followed by positron emission tomography and computed tomography scans of cerebral glucose uptake. Surviving pigs were euthanized 48 h after ROSC, and the brains were removed for detecting mitochondrial function. RESULTS Compared with the SA group, SFI treatment produced a better neurologic outcome 48 h after ROSC (P<0.05). However, there was no significant difference of survival rate between the SA and SFI groups (83.3% vs. 81.8%, P>0.05). After ROSC, the SA group showed a decrease in the maximum standardized uptake value of different regions in the brain tissue, where SFI treatment can ameliorate these decreases (P<0.01 or P<0.05). Improved mitochondrial respiratory properties and higher mitochondrial membrane potential were also found following SFI treatment compared with the SA group at 48 h after ROSC (P<0.05 or P<0.01). CONCLUSION SFI treatment after resuscitation has significant neuroprotective effects against disruption of cerebral energy metabolism from CA by improving glucose uptake and by normalizing mitochondrial function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | | | | | | | | |
Collapse
|
27
|
Ranolazine ameliorates postresuscitation electrical instability and myocardial dysfunction and improves survival with good neurologic recovery in a rat model of cardiac arrest. Heart Rhythm 2014; 11:1641-7. [DOI: 10.1016/j.hrthm.2014.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 12/19/2022]
|
28
|
Vasileiou PVS, Xanthos T, Barouxis D, Pantazopoulos C, Papalois AE, Lelovas P, Kotsilianou O, Pliatsika P, Kouskouni E, Iacovidou N. Erythropoietin administration facilitates return of spontaneous circulation and improves survival in a pig model of cardiac arrest. Am J Emerg Med 2014; 32:871-7. [PMID: 24857249 DOI: 10.1016/j.ajem.2014.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND In addition to its role in the endogenous control of erythropoiesis, recombinant human erythropoietin (rh-EPO) has been shown to exert tissue protective properties in various experimental models. However, its role in the cardiac arrest (CA) setting has not yet been adequately investigated. AIM The aim of this study is to examine the effect of rh-EPO in a pig model of ventricular fibrillation (VF)-induced CA. METHODS Ventricular fibrillation was electrically induced in 20 piglets and maintained untreated for 8 minutes before attempting resuscitation. Animals were randomized to receive rh-EPO (5000 IU/kg, erythropoietin [EPO] group, n = 10) immediately before the initiation of chest compressions or to receive 0.9% Sodium chloride solution instead (control group, n = 10). RESULTS Compared with the control, the EPO group had higher rates of return of spontaneous circulation (ROSC) (100% vs 60%, P = .011) and higher 48-hour survival (100% vs 40%, P = .001). Diastolic aortic pressure and coronary perfusion pressure during cardiopulmonary resuscitation were significantly higher in the EPO group compared with the control group. Erythropoietin-treated animals required fewer number of shocks in comparison with animals that received normal saline (P = .04). Furthermore, the neurologic alertness score was higher in the EPO group compared with that of the control group at 24 (P = .004) and 48 hours (P = .021). CONCLUSION Administration of rh-EPO in a pig model of VF-induced CA just before reperfusion facilitates ROSC and improves survival rates as well as hemodynamic variables.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece; Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece.
| | - Theodoros Xanthos
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece; Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece
| | - Dimitrios Barouxis
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece; Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece
| | - Charalampos Pantazopoulos
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece; Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece
| | | | - Paulos Lelovas
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece
| | | | - Paraskevi Pliatsika
- National and Kapodistrian University of Athens, Medical School, MSc "Cardiopulmonary Resuscitation", Athens, Greece
| | - Evaggelia Kouskouni
- National and Kapodistrian University of Athens, Medical School, Aretaieio Hospital, Department of Biopathology-Microbiology, Athens, Greece
| | - Nicoletta Iacovidou
- Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece; National and Kapodistrian University of Athens, Medical School, Aretaieio Hospital, 2nd Department of Ob&Gyn, Athens, Greece
| |
Collapse
|
29
|
Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:192769. [PMID: 24696844 PMCID: PMC3947758 DOI: 10.1155/2014/192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/04/2014] [Indexed: 01/18/2023]
Abstract
Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.
Collapse
|
30
|
Gazmuri RJ. Targeting Mitochondria During CPR. Resuscitation 2014. [DOI: 10.1007/978-88-470-5507-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Karmazyn M. NHE-1: still a viable therapeutic target. J Mol Cell Cardiol 2013; 61:77-82. [PMID: 23429008 DOI: 10.1016/j.yjmcc.2013.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
The concept of NaH exchange (NHE) involvement in cardiac pathology has been espoused for decades and supported by a plethora of experimental studies demonstrating salutary effects of NHE inhibition in protecting the myocardium against ischemic and reperfusion injury as well as attenuating myocardial remodelling and heart failure. NHE is actually a family of sodium and proton transporting proteins of which 10 isoforms have been identified. Myocardial NHE is represented primarily by the ubiquitous NHE-1 subtype which is expressed in most tissues. The robust positive results seen with NHE-1 inhibitors in experimental studies have led to relatively rapid development of these pharmacological agents for clinical assessment especially as potential cardioprotective therapies. Yet clinical studies have revealed, at best, inconsistent results as evidenced by poor efficacy and serious side effects, the latter revealed with the use of the NHE-1 inhibitor cariporide in high-risk patients undergoing coronary artery bypass grafting and evidenced by an increased incidence of cerebrovascular events of thromboembolic origin. The lack of success in clinical trials coupled with potential for toxicity has had a negative impact on development of cardiac therapeutic agents which have been developed based on the concept of NHE-1 inhibition. Whether this response is justified is open for discussion although a close scrutiny of clinical trial outcomes suggests that it may not be and that NHE-1 inhibition, if applied appropriately continues to represent an effective, if not the most effective approach for myocardial salvage following ischemic insult. Moreover, in addition to its cardioprotective effects, emerging evidence further suggests that NHE-1 inhibition is an effective strategy to minimize myocardial remodelling as well as a potentially effective strategy to improve efficacy of resuscitation following cardiac arrest. Thus, NHE-1 inhibition continues to represent a potentially highly effective therapeutic approach for the treatment of heart disease. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Physiology & Pharmacology, University of Western Ontario, Medical Sciences Building, London, Ontario, Canada N6A 5C1.
| |
Collapse
|