1
|
Horiuchi Y, Hirayama S, Hori A, Ichikawa Y, Soda S, Seino U, Sekihara K, Ueno T, Fukushima Y, Kubono K, Miida T. Preβ1-high-density lipoprotein binds to TG-rich lipoproteins and its release is impaired in the postprandial state among patients with poorly controlled type 2 diabetes. Ann Clin Biochem 2025:45632251328154. [PMID: 40038041 DOI: 10.1177/00045632251328154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BackgroundAlthough preβ1-high-density lipoprotein (preβ1-HDL) promotes cholesterol efflux, high fasting preβ1-high-density lipoprotein levels after breakfast are reduced in patients with poorly controlled type 2 diabetes.ObjectiveThis study investigated whether preβ1-high-density lipoprotein binds to triglyceride (TG)-rich lipoproteins (TGRLs) in the postprandial state and is released during lipolysis.MethodsWe measured preβ1-high-density lipoprotein concentrations, lecithin-cholesterol acyltransferase (LCAT) activity, and LCAT-dependent preβ1-high-density lipoprotein conversion before and after breakfast in patients with diabetes. We also performed in vitro studies using TGRLs. Preβ1-high-density lipoprotein was quantified by enzyme-linked immunosorbent assay and native two-dimensional gradient gel (N-2D-gel) electrophoresis.ResultsBefore breakfast, the diabetes group had higher preβ1-high-density lipoprotein concentrations than the healthy controls; after breakfast, levels in the two groups were similar. Neither LCAT mass nor the LCAT-dependent preβ1-high-density lipoprotein conversion rate changed after breakfast. Mixing of fasting plasma with chylomicrons or very-low-density lipoprotein (VLDL) reduced the preβ1-high-density lipoprotein level by 15% ± 4% and 45% ± 10%, respectively. N-2D-gel electrophoresis showed that preβ1-high-density lipoprotein was generated by bacteria-derived TG lipase only from postprandial VLDL of patients with type 2 diabetes.ConclusionPreβ1-high-density lipoprotein binds to TGRLs in the postprandial state and is released during lipolysis, implying that postprandial hyperlipidemia impairs reverse cholesterol transport in patients with poorly controlled type 2 diabetes.
Collapse
Affiliation(s)
- Yuna Horiuchi
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Urayasu, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Health Service Center, Tokyo Gakugei University, Tokyo, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Urayasu, Japan
| | - Yuri Ichikawa
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Urayasu, Japan
| | - Satoshi Soda
- Department of Endocrinology and Metabolism, Niigata City General Hospital, Niigata, Japan
| | - Utako Seino
- Division of Clinical Laboratory, Misono Hospital, Niigata, Japan
| | - Kazumasa Sekihara
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Fukushima
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuo Kubono
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Urayasu, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Urayasu, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Stadler JT, Bärnthaler T, Borenich A, Emrich IE, Habisch H, Rani A, Holzer M, Madl T, Heine GH, Marsche G. Low LCAT activity is linked to acute decompensated heart failure and mortality in patients with CKD. J Lipid Res 2024; 65:100624. [PMID: 39154733 PMCID: PMC11416249 DOI: 10.1016/j.jlr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Chronic kidney disease (CKD) is often associated with decreased activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for HDL maturation. This reduction in LCAT activity may potentially contribute to an increased risk of cardiovascular mortality in patients with CKD. The objective of this study was to investigate the association between LCAT activity in patients with CKD and the risk of adverse outcomes. We measured serum LCAT activity and characterized lipoprotein profiles using nuclear magnetic resonance spectroscopy in 453 non-dialysis CKD patients from the CARE FOR HOMe study. LCAT activity correlated directly with smaller HDL particle size, a type of HDL potentially linked to greater cardiovascular protection. Over a mean follow-up of 5.0 ± 2.2 years, baseline LCAT activity was inversely associated with risk of death (standardized HR 0.62, 95% CI 0.50-0.76; P < 0.001) and acute decompensated heart failure (ADHF) (standardized HR 0.67, 95% CI 0.52-0.85; P = 0.001). These associations remained significant even after adjusting for other risk factors. Interestingly, LCAT activity was not associated with the incidence of atherosclerotic cardiovascular events or kidney function decline during the follow-up. To conclude, our findings demonstrate that low LCAT activity is independently associated with all-cause mortality and ADHF in patients with CKD, and is directly linked to smaller, potentially more protective HDL subclasses.
Collapse
Affiliation(s)
- Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Insa E Emrich
- Saarland University, Faculty of Medicine, Homburg/Saarbrücken, Germany
| | - Hansjörg Habisch
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Gunnar H Heine
- Saarland University, Faculty of Medicine, Homburg/Saarbrücken, Germany; Department of Nephrology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany.
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
3
|
Yamatani K, Hirayama S, Seino U, Hirayama A, Hori A, Suzuki K, Idei M, Kitahara M, Miida T. Preβ1-high-density lipoprotein metabolism is delayed in patients with chronic kidney disease not on hemodialysis. J Clin Lipidol 2020; 14:730-739. [PMID: 32868248 DOI: 10.1016/j.jacl.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Preβ1-high-density lipoprotein (HDL) is a lipid-poor cholesterol acceptor that is converted to lipid-rich HDL by lecithin-cholesterol acyltransferase (LCAT). In patients receiving hemodialysis, preβ1-HDL metabolism is hampered even if HDL cholesterol is normal. Hemodialysis may affect preβ1-HDL metabolism by releasing lipases from the vascular wall due to heparin. OBJECTIVES We investigated whether preβ1-HDL metabolism is delayed in patients with chronic kidney disease (CKD) who are not receiving hemodialysis. METHODS We examined 44 patients with Stage 3 or higher CKD and 22 healthy volunteers (Control group). The patients with CKD were divided into those without renal replacement therapy (CKD group, n = 22) and those undergoing continuous ambulatory peritoneal dialysis (CAPD group, n = 22). Plasma preβ1-HDL concentrations were determined by immunoassay. During incubation at 37°C, we used 5,5-dithio-bis (2-nitrobenzoic acid) (DTNB) to inhibit LCAT activity and defined the conversion halftime of preβ1-HDL (CHTpreβ1) as the time required for the difference in preβ1-HDL concentration in the presence and absence of 5,5-DTNB to reach half the baseline concentration. RESULTS The absolute and relative preβ1-HDL concentrations were higher, and CHTpreβ1 was longer in the CKD and CAPD groups than in the Control group. Preβ1-HDL concentration was significantly correlated with CHTpreβ1 but not with LCAT activity in patients with CKD and CAPD. CONCLUSION Preβ1-HDL metabolism is delayed in patients with CKD who are not on hemodialysis. This preβ1-HDL metabolic delay may progress as renal function declines.
Collapse
Affiliation(s)
- Kotoko Yamatani
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Utako Seino
- Pathology Laboratory, Shinraku-en Hospital, Niigata, Niigata, Japan
| | - Akiko Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koya Suzuki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mayumi Idei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masaki Kitahara
- The Sulphuric Acid Association of Japan, Minato-ku, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Bu XM, Niu DM, Wu J, Yuan YL, Song JX, Wang JJ. Elevated levels of preβ1-high-density lipoprotein are associated with cholesterol ester transfer protein, the presence and severity of coronary artery disease. Lipids Health Dis 2017; 16:4. [PMID: 28073362 PMCID: PMC5223436 DOI: 10.1186/s12944-016-0394-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Background Preβ1-high-density lipoprotein (preβ1-HDL), plays an important role in reverse cholesterol transport and exhibits potent risk for coronary artery disease (CAD). However, the association of plasma preβ1-HDL and cholesterol ester transfer protein (CETP) levels in CAD patients and the relationship of preβ1-HDL with extent of CAD are debatable. Methods Preβ1-HDL and CETP levels were measured by enzymed-linked immunosorbent assay (ELISAs) in 88 acute coronary syndromes (ACS), 79 stable coronary artery disease (SCAD) patients and 85 control subjects. The correlation analyses, multiple linear regression analyses and logistic regression analyses were performed, respectively. Results The preβ1-HDL and CETP levels in ACS patients were significantly higher than those in SCAD patients and both of them were higher than controls’. Preβ1-HDL levels were positively associated with CETP (R = 0.348, P = 0.000), the diameter of stenosis (R = 0.253, P = 0.005), the number of vessel disease (R = 0.274, P = 0.002) and Gensini score (R = 0.227, P = 0.009) in CAD patients. Stepwise multiple linear regression analyses showed that CETP was one of the determinants of preβ1-HDL levels. Logistic regression analysis revealed that elevated preβ1-HDL and CETP were potential risk factors for both ACS and SCAD. Conclusion The elevated preβ1-HDL levels may change with CETP concentrations in CAD patients and were related to the presence and severity of CAD.
Collapse
Affiliation(s)
- Xiao-Min Bu
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China
| | - Dong-Mei Niu
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China
| | - Jia Wu
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China
| | - Yun-Long Yuan
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China
| | - Jia-Xi Song
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China.
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, 305East Zhongshan Rd., Nanjing, 210002, China.
| |
Collapse
|
6
|
Shamburek RD, Bakker-Arkema R, Shamburek AM, Freeman LA, Amar MJ, Auerbach B, Krause BR, Homan R, Adelman SJ, Collins HL, Sampson M, Wolska A, Remaley AT. Safety and Tolerability of ACP-501, a Recombinant Human Lecithin:Cholesterol Acyltransferase, in a Phase 1 Single-Dose Escalation Study. Circ Res 2015; 118:73-82. [PMID: 26628614 DOI: 10.1161/circresaha.115.306223] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
Abstract
RATIONALE Low high-density lipoprotein-cholesterol (HDL-C) in patients with coronary heart disease (CHD) may be caused by rate-limiting amounts of lecithin:cholesterol acyltransferase (LCAT). Raising LCAT may be beneficial for CHD, as well as for familial LCAT deficiency, a rare disorder of low HDL-C. OBJECTIVE To determine safety and tolerability of recombinant human LCAT infusion in subjects with stable CHD and low HDL-C and its effect on plasma lipoproteins. METHODS AND RESULTS A phase 1b, open-label, single-dose escalation study was conducted to evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of recombinant human LCAT (ACP-501). Four cohorts with stable CHD and low HDL-C were dosed (0.9, 3.0, 9.0, and 13.5 mg/kg, single 1-hour infusions) and followed up for 28 days. ACP-501 was well tolerated, and there were no serious adverse events. Plasma LCAT concentrations were dose-proportional, increased rapidly, and declined with an apparent terminal half-life of 42 hours. The 0.9-mg/kg dose did not significantly change HDL-C; however, 6 hours after doses of 3.0, 9.0, and 13.5 mg/kg, HDL-C was elevated by 6%, 36%, and 42%, respectively, and remained above baseline ≤4 days. Plasma cholesteryl esters followed a similar time course as HDL-C. ACP-501 infusion rapidly decreased small- and intermediate-sized HDL, whereas large HDL increased. Pre-β-HDL also rapidly decreased and was undetectable ≤12 hours post ACP-501 infusion. CONCLUSIONS ACP-501 has an acceptable safety profile after a single intravenous infusion. Lipid and lipoprotein changes indicate that recombinant human LCAT favorably alters HDL metabolism and support recombinant human LCAT use in future clinical trials in CHD and familial LCAT deficiency patients. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01554800.
Collapse
Affiliation(s)
- Robert D Shamburek
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.).
| | - Rebecca Bakker-Arkema
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Alexandra M Shamburek
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Lita A Freeman
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Marcelo J Amar
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Bruce Auerbach
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Brian R Krause
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Reynold Homan
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Steve J Adelman
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Heidi L Collins
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Maureen Sampson
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Anna Wolska
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| | - Alan T Remaley
- From the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (R.D.S., A.M.S., L.A.F., M.J.A., A.W., A.T.R.); AlphaCore Pharma LLC., Ann Arbor, MI (R.B.-A., B.A., B.R.K., R.H.); VascularStrategies LLC., Plymouth Meeting, PA (S.J.A., H.L.C.); and Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD (M.S.)
| |
Collapse
|