1
|
Yan H, Zhang S, Ma S. Hierarchy‐assisted gene expression regulatory network analysis. Stat Anal Data Min 2023. [DOI: 10.1002/sam.11609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Han Yan
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
- Department of Biostatistics Yale School of Public Health New Haven Connecticut USA
| | - Sanguo Zhang
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
- Pazhou Lab Guangzhou China
| | - Shuangge Ma
- Department of Biostatistics Yale School of Public Health New Haven Connecticut USA
| |
Collapse
|
2
|
Grätz C, Bui MLU, Thaqi G, Kirchner B, Loewe RP, Pfaffl MW. Obtaining Reliable RT-qPCR Results in Molecular Diagnostics—MIQE Goals and Pitfalls for Transcriptional Biomarker Discovery. Life (Basel) 2022; 12:life12030386. [PMID: 35330136 PMCID: PMC8953338 DOI: 10.3390/life12030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we discuss the development pipeline for transcriptional biomarkers in molecular diagnostics and stress the importance of a reliable gene transcript quantification strategy. Hence, a further focus is put on the MIQE guidelines and how to adapt them for biomarker discovery, from signature validation up to routine diagnostic applications. First, the advantages and pitfalls of the holistic RNA sequencing for biomarker development will be described to establish a candidate biomarker signature. Sequentially, the RT-qPCR confirmation process will be discussed to validate the discovered biomarker signature. Examples for the successful application of RT-qPCR as a fast and reproducible quantification method in routinemolecular diagnostics are provided. Based on the MIQE guidelines, the importance of “key steps” in RT-qPCR is accurately described, e.g., reverse transcription, proper reference gene selection and, finally, the application of automated RT-qPCR data analysis software. In conclusion, RT-qPCR proves to be a valuable tool in the establishment of a disease-specific transcriptional biomarker signature and will have a great future in molecular diagnostics or personalized medicine.
Collapse
Affiliation(s)
- Christian Grätz
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | - Granit Thaqi
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | | | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- Correspondence: or
| |
Collapse
|
3
|
Atout S, Shurrab S, Loveridge C. Evaluation of the Suitability of RNAscope as a Technique to Measure Gene Expression in Clinical Diagnostics: A Systematic Review. Mol Diagn Ther 2021; 26:19-37. [PMID: 34957535 PMCID: PMC8710359 DOI: 10.1007/s40291-021-00570-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Objective To evaluate the application of RNAscope in the clinical diagnostic field compared to the current ‘gold standard’ methods employed for testing gene expression levels, including immunohistochemistry (IHC), quantitative real time PCR (qPCR), and quantitative reverse transcriptase PCR (qRT-PCR), and to detect genes, including DNA in situ hybridisation (DNA ISH). Methods This systematic review searched CINAHL, Medline, Embase and Web of Science databases for studies that were conducted after 2012 and that compared RNAscope with one or more of the ‘gold standard’ techniques in human samples. QUADAS-2 test was used for the evaluation of the articles’ risk of bias. The results were reviewed narratively and analysed qualitatively. Results A total of 27 articles (all retrospective studies) were obtained and reviewed. The 27 articles showed a range of low to middle risk of bias scores, as assessed by QUADAS-2 test. 26 articles studied RNAscope within cancer samples. RNAscope was compared to different techniques throughout the included studies (IHC, qPCR, qRT-PCR and DNA ISH). The results confirmed that RNAscope is a highly sensitive and specific method that has a high concordance rate (CR) with qPCR, qRT-PCR, and DNA ISH (81.8–100%). However, the CR with IHC was lower than expected (58.7–95.3%), which is mostly due to the different products that each technique measures (RNA vs. protein). Discussion This is the first systematic review to be conducted on the use of RNAscope in the clinical diagnostic field. RNAscope was found to be a reliable and robust method that could complement gold standard techniques currently used in clinical diagnostics to measure gene expression levels or for gene detection. However, there were not enough data to suggest that RNAscope could stand alone in the clinical diagnostic setting, indicating further prospective studies to validate diagnostic accuracy values, in keeping with relevant regulations, followed by cost evaluation are required. Supplementary Information The online version contains supplementary material available at 10.1007/s40291-021-00570-2.
Collapse
Affiliation(s)
- Sameeha Atout
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Room 202, Sir James Black Building, Glasgow, G128QQ, UK
| | - Shaymaa Shurrab
- Division of Biochemical Diseases, Department of Paediatrics, School of Medicine, BC Children's Hospital, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Carolyn Loveridge
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Room 202, Sir James Black Building, Glasgow, G128QQ, UK.
| |
Collapse
|
4
|
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine.
Collapse
Affiliation(s)
| | - Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Johannes Grillari
- Evercyte GmbH, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Electrochemical detection of synthetic DNA and native 16S rRNA fragments on a microarray using a biotinylated intercalator as coupling site for an enzyme label. Talanta 2015; 143:19-26. [PMID: 26078123 DOI: 10.1016/j.talanta.2015.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
The direct electrochemical detection of synthetic DNA and native 16S rRNA fragments isolated from Escherichia coli is described. Oligonucleotides are detected via selective post-labeling of double stranded DNA and DNA-RNA duplexes with a biotinylated intercalator that enables high-specific binding of a streptavidin/alkaline phosphatase conjugate. The alkaline phosphatase catalyzes formation of p-aminophenol that is subsequently oxidized at the underlying gold electrode and hence enables the detection of complementary hybridization of the DNA capture strands due to the enzymatic signal amplification. The hybridization assay was performed on microarrays consisting of 32 individually addressable gold microelectrodes. Synthetic DNA strands with sequences representing six different pathogens which are important for the diagnosis of urinary tract infections could be detected at concentrations of 60 nM. Native 16S rRNA isolated from the different pathogens could be detected at a concentration of 30 fM. Optimization of the sensing surface is described and influences on the assay performance are discussed.
Collapse
|
6
|
Fatty Acid binding protein 7 is a molecular marker in adenoid cystic carcinoma of the salivary glands: implications for clinical significance. Transl Oncol 2014; 7:780-7. [PMID: 25500088 PMCID: PMC4311037 DOI: 10.1016/j.tranon.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the salivary glands. Its diagnosis is difficult due to overlapping features with other salivary tumors. Gene expression analysis may complement traditional diagnostic methods. We searched gene expression patterns in the Gene Expression Omnibus (GEO) database and in our tumor and normal samples. The biologic and prognostic potential of the identified genes was analyzed. The GEO data set of primary xenografted ACCs revealed that expression of five genes, engrailed homeobox 1 (EN1), fatty acid binding protein 7 (FABP7), hemoglobin epsilon 1, MYB, and versican (VCAN), was dramatically increased. mRNA expression of EN1, FABP7, MYB, and VCAN distinguished our sporadic ACCs from normal tissues and benign tumors. FABP7 expression appeared to be regulated differently from EN1 and MYB and was crossly correlated with poor prognosis in our ACC cohort. Immunohistochemistry showed that FABP7 protein was predominantly expressed in the nucleus of myoepithelial cells of both tubular and cribriform subtypes. In contrast, in the solid subtype, which is often associated with a lower survival rate, FABP7 protein was uniformly expressed in cancerous cells. One case with cribriform architecture and the highest level of FABP7 mRNA showed strong FABP7 staining in both duct-type epithelial and myoepithelial cells, suggesting that diffuse expression of FABP7 protein might be related to aggressive tumor behavior and poor prognosis. We propose FABP7 as a novel biomarker in ACC. The molecule may be useful in diagnosis and for identifying more effective therapies targeting this protein or upstream molecules that regulate it.
Collapse
|
7
|
Phuchareon J, van Zante A, Overdevest JB, McCormick F, Eisele DW, Tetsu O. c-Kit Expression is Rate-Limiting for Stem Cell Factor-Mediated Disease Progression in Adenoid Cystic Carcinoma of the Salivary Glands. Transl Oncol 2014; 7:537-45. [PMID: 25389449 PMCID: PMC4225653 DOI: 10.1016/j.tranon.2014.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/21/2014] [Accepted: 07/29/2014] [Indexed: 01/25/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the salivary glands in which c-Kit is overexpressed and activated, although the mechanism for this is as yet unclear. We analyzed 27 sporadic ACC tumor specimens to examine the biologic and clinical significance of c-Kit activation. Mutational analysis revealed expression of wild-type c-Kit in all, eliminating gene mutation as a cause of activation. Because stem cell factor (SCF) is c-Kit's sole ligand, we analyzed its expression in the tumor cells and their environment. Immunohistochemistry revealed its presence in c-Kit–positive tumor cells, suggesting an activation of autocrine signaling. We observed a significant induction of ERK1/2 in the cells. SCF staining was also found in other types of non-cancerous cells adjacent to tumors within salivary glands, including stromal fibroblasts, neutrophils, peripheral nerve, skeletal muscle, vascular endothelial cells, mucous acinar cells, and intercalated ducts. Quantitative PCR showed that the top quartile of c-Kit mRNA expression distinguished ACCs from normal salivary tissues and was cross-correlated with short-term poor prognosis. Expression levels of SCF and c-Kit were highly correlated in the cases with perineural invasion. These observations suggest that c-Kit is potentially activated by receptor dimerization upon stimulation by SCF in ACC, and that the highest quartile of c-Kit mRNA expression could be a predictor of poor prognosis. Our findings may support an avenue for c-Kit-targeted therapy to improve disease control in ACC patients harboring the top quartile of c-Kit mRNA expression.
Collapse
Affiliation(s)
- Janyaporn Phuchareon
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco, CA ; UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA
| | - Annemieke van Zante
- Department of Pathology, School of Medicine, University of California, San Francisco, CA
| | - Jonathan B Overdevest
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco, CA
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA
| | - David W Eisele
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco, CA ; UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA
| | - Osamu Tetsu
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco, CA ; UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA
| |
Collapse
|
8
|
Transcriptional biomarkers--high throughput screening, quantitative verification, and bioinformatical validation methods. Methods 2012; 59:3-9. [PMID: 22967906 DOI: 10.1016/j.ymeth.2012.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 02/08/2023] Open
Abstract
Molecular biomarkers found their way into many research fields, especially in molecular medicine, medical diagnostics, disease prognosis, risk assessment but also in other areas like food safety. Different definitions for the term biomarker exist, but on the whole biomarkers are measureable biological molecules that are characteristic for a specific physiological status including drug intervention, normal or pathological processes. There are various examples for molecular biomarkers that are already successfully used in clinical diagnostics, especially as prognostic or diagnostic tool for diseases. Molecular biomarkers can be identified on different molecular levels, namely the genome, the epigenome, the transcriptome, the proteome, the metabolome and the lipidome. With special "omic" technologies, nowadays often high throughput technologies, these molecular biomarkers can be identified and quantitatively measured. This article describes the different molecular levels on which biomarker research is possible including some biomarker candidates that have already been identified. Hereby the transcriptomic approach will be described in detail including available high throughput methods, molecular levels, quantitative verification, and biostatistical requirements for transcriptional biomarker identification and validation.
Collapse
|
9
|
Gillet JP, Gottesman MM. Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol 2011; 12:686-92. [PMID: 21118086 PMCID: PMC3188423 DOI: 10.2174/138920111795163931] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 01/12/2023]
Abstract
ATP-Binding Cassette (ABC) transporters are important mediators of multidrug resistance (MDR) in patients with cancer. Although their role in MDR has been extensively studied in vitro, their value in predicting response to chemotherapy has yet to be fully determined. Establishing a molecular diagnostic assay dedicated to the quantitation of ABC transporter genes is therefore critical to investigate their involvement in clinical MDR. In this article, we provide an overview of the methodologies that have been applied to analyze the mRNA expression levels of ABC transporters, by describing the technology, its pros and cons, and the experimental protocols that have been followed. We also discuss recent studies performed in our laboratory that assess the ability of the currently available high-throughput gene expression profiling platforms to discriminate between highly homologous genes. This work led to the conclusion that high-throughput TaqMan-based qRT-PCR platforms provide standardized clinical assays for the molecular detection of ABC transporters and other families of highly homologous MDR-linked genes encoding, for example, the uptake transporters (solute carriers-SLCs) and the phase I and II metabolism enzymes.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| |
Collapse
|
10
|
The use of omic technologies for biomarker development to trace functions of anabolic agents. J Chromatogr A 2009; 1216:8192-9. [DOI: 10.1016/j.chroma.2009.01.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 12/25/2022]
|
11
|
Abstract
In disease screening and diagnosis, often multiple markers are measured and they are combined in order to improve the accuracy of diagnosis. McIntosh and Pepe (2002, Biometrics58, 657-644) showed that the risk score, defined as the probability of disease conditional on multiple markers, is the optimal function for classification based on the Neyman-Pearson Lemma. They proposed a two-step procedure to approximate the risk score. However, the resulted ROC curve is only defined in a subrange (L, h) of the false-positive rates in (0,1) and determination of the lower limit L needs extra prior information. In practice, most diagnostic tests are not perfect and it is usually rare that a single marker is uniformly better than the other tests. Using simulation, I show that multivariate adaptive regression spline (MARS) is a useful tool to approximate the risk score when combining multiple markers, especially when the ROC curves from multiple tests cross. The resulted ROC is defined in the whole range of (0,1) and it is easy to implement and has intuitive interpretation. The sample code of the application is shown in the appendix.
Collapse
Affiliation(s)
- Binbing Yu
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland 20892, U.S.A
| |
Collapse
|
12
|
Orina JN, Calcagno AM, Wu CP, Varma S, Shih J, Lin M, Eichler G, Weinstein JN, Pommier Y, Ambudkar SV, Gottesman MM, Gillet JP. Evaluation of current methods used to analyze the expression profiles of ATP-binding cassette transporters yields an improved drug-discovery database. Mol Cancer Ther 2009; 8:2057-66. [PMID: 19584229 PMCID: PMC2736804 DOI: 10.1158/1535-7163.mct-09-0256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by multiple mechanisms. These mechanisms can act individually or synergistically, leading to MDR, in which the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been successful. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing highly homologous genes from small amounts of tissue is fundamental to achieving any significant enhancement in our understanding of MDR mechanisms and could lead to treatments designed to circumvent it. In this study, we use a previously established database that allows the identification of lead compounds in the early stages of drug discovery that are not ATP-binding cassette (ABC) transporter substrates. We believe this can serve as a model for appraising the accuracy and sensitivity of current methods used to analyze the expression profiles of ABC transporters. We found two platforms to be superior methods for the analysis of expression profiles of highly homologous gene superfamilies. This study also led to an improved database by revealing previously unidentified substrates for ABCB1, ABCC1, and ABCG2, transporters that contribute to MDR.
Collapse
Affiliation(s)
- Josiah N. Orina
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Anna Maria Calcagno
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Chung-Pu Wu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Genomics and Bioinformatics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Joanna Shih
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Min Lin
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Gabriel Eichler
- Genomics and Bioinformatics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - John N. Weinstein
- Genomics and Bioinformatics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Yves Pommier
- Genomics and Bioinformatics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Yu B. Approximating the risk score for disease diagnosis using MARS. J Appl Stat 2009. [DOI: 10.1080/02664760802499352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Gillet JP, Molina TJ, Jamart J, Gaulard P, Leroy K, Briere J, Theate I, Thieblemont C, Bosly A, Herin M, Hamels J, Remacle J. Evaluation of a low density DNA microarray for small B-cell non-Hodgkin lymphoma differential diagnosis. Leuk Lymphoma 2009; 50:410-8. [DOI: 10.1080/10428190902763459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Van der Vorst S, Dekairelle AF, Irenge L, Hamoir M, Robert A, Gala JL. Automated cell disruption is a reliable and effective method of isolating RNA from fresh snap-frozen normal and malignant oral mucosa samples. Clin Chem Lab Med 2009; 47:294-301. [DOI: 10.1515/cclm.2009.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract: This study compared automated vs. manual tissue grinding in terms of RNA yield obtained from oral mucosa biopsies.: A total of 20 patients undergoing uvulectomy for sleep-related disorders and 10 patients undergoing biopsy for head and neck squamous cell carcinoma were enrolled in the study. Samples were collected, snap-frozen in liquid nitrogen, and divided into two parts of similar weight. Sample grinding was performed on one sample from each pair, either manually or using an automated cell disruptor. The performance and efficacy of each homogenization approach was compared in terms of total RNA yield (spectrophotometry, fluorometry), mRNA quantity [densitometry of specific: Although spectrophotometry and fluorometry results were comparable for both homogenization methods,: Automated tissue homogenization appears to be a versatile, quick, and reliable method of cell disruption and is especially useful in the case of small malignant samples, which show unreliable results when processed by manual homogenization.Clin Chem Lab Med 2009;47:294–301.
Collapse
|
16
|
Zhao Y, Simon R. BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Inform 2008; 6:9-15. [PMID: 19259398 PMCID: PMC2623314 DOI: 10.4137/cin.s448] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The explosion of available microarray data on human cancer increases the urgency for developing methods for effectively sharing this data among clinical cancer investigators. Lack of a smooth interface between the databases and statistical analysis tools limits the potential benefits of sharing the publicly available microarray data. To facilitate the efficient sharing and use of publicly available microarray data among cancer investigators, we have built a BRB-ArrayTools Data Archive including over one hundred human cancer microarray projects for 28 cancer types. Expression array data and clinical descriptors have been imported into BRB-ArrayTools and are stored as BRB-ArrayTools project folders on the archive. The data archive can be accessed from: http://linus.nci.nih.gov/~brb/DataArchive.html Our BRB-ArrayTools data archive and GEO importer represent ongoing efforts to provide effective tools for efficiently sharing and utilizing human cancer microarray data.
Collapse
Affiliation(s)
- Yingdong Zhao
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
17
|
Bruland T, Anderssen E, Doseth B, Bergum H, Beisvag V, Laegreid A. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards. BMC Genomics 2007; 8:377. [PMID: 17949480 PMCID: PMC2147032 DOI: 10.1186/1471-2164-8-377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 10/18/2007] [Indexed: 11/18/2022] Open
Abstract
Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), N-7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Li L, Wei D, Yap Y, Chen F. Moving cancer diagnostics from bench to bedside. Trends Biotechnol 2007; 25:166-73. [PMID: 17316853 DOI: 10.1016/j.tibtech.2007.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/11/2007] [Accepted: 02/08/2007] [Indexed: 12/27/2022]
Abstract
To improve treatment and reduce the mortality from cancer, a key task is to detect the disease as early as possible. To achieve this, many new technologies have been developed for biomarker discovery and validation. This review provides an overview of omics technologies in biomarker discovery and cancer detection, and highlights recent applications and future trends in cancer diagnostics. Although the present omic methods are not ready for immediate clinical use as diagnostic tools, it can be envisaged that simple, fast, robust, portable and cost-effective clinical diagnosis systems could be available in near future, for home and bedside use.
Collapse
Affiliation(s)
- Xuewu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
19
|
Sauter KBM, Marx A. Evolving thermostable reverse transcriptase activity in a DNA polymerase scaffold. Angew Chem Int Ed Engl 2007; 45:7633-5. [PMID: 17054304 DOI: 10.1002/anie.200602772] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katharina B M Sauter
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, M 726, 78457 Konstanz, Germany
| | | |
Collapse
|
20
|
Sauter KBM, Marx A. Generierung einer thermostabilen Reverse-Transkriptase-Aktivität aus einer DNA-abhängigen DNA-Polymerase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602772] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Badrian B, Bogoyevitch MA. Gene expression profiling reveals complex changes following MEK-EE expression in cardiac myocytes. Int J Biochem Cell Biol 2006; 39:349-65. [PMID: 17035067 DOI: 10.1016/j.biocel.2006.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/26/2006] [Accepted: 09/04/2006] [Indexed: 11/26/2022]
Abstract
The activation of the MEK/ERK pathway has been implicated in the proliferative growth of many tissues, however in the heart it has been linked with hypertrophic growth of the individual cardiac myocytes. We have explored the transcriptional consequences of prolonged ERK1/2 activation in cardiac myocytes following the adenoviral overexpression of a constitutively active form of MEK, MEK-EE. Analysis of microarray data obtained using full rat genome arrays showed >2000 gene expression changes in response to MEK-EE overexpression for 24h. We observed similar numbers of genes upregulated and downregulated. The genes were involved in diverse processes including cell structure, metabolism and intracellular signalling. There were also changes in the pro- and ani-apoptotic genes as well as downregulation of the antioxidant enzymes, Mn superoxide dismutase, catalase and thioredoxin 2. Our results reveal the complexity of transcriptional changes that follow the activation of the ERK signalling pathway in these cells and suggest that activation of this MAPK pathway impinges on diverse cellular functions.
Collapse
Affiliation(s)
- Bahareh Badrian
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|