1
|
Figeys M, Loucks TM, Leung AWS, Kim ES. Transcranial direct current stimulation over the right dorsolateral prefrontal cortex increases oxyhemoglobin concentration and cognitive performance dependent on cognitive load. Behav Brain Res 2023; 443:114343. [PMID: 36787866 DOI: 10.1016/j.bbr.2023.114343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a potential method for cognitive enhancement. tDCS may induce a cascade of neurophysiological changes including alterations in cerebral oxygenation. However, the effects of tDCS on the cognitive-cerebral oxygenation interaction remains unclear. Further, oxygenation variability across individuals remains minimally controlled for. The purpose of this sham-controlled study was to test the effects of anodal tDCS over the right dorsolateral prefrontal cortex (DLPFC) on the interaction between working memory and cerebral oxygenation while controlling for individual oxygenation variability. Thirty-three adults received resting-state functional near-infrared spectroscopy (fNIRS) recordings over bilateral prefrontal cortices. Following this, working memory was tested using a Toulouse n-back task concurrently paired with fNIRS, with measurements taken before and after 20 min of anodal or sham tDCS at 1.5 mA. With individual oxygenation controlled for, anodal tDCS was found to increase the oxyhemoglobin concentration over the right DLPFC during the 2-back (q = .015) and 3-back (q = .008) conditions. Additionally, anodal tDCS was found to improve accuracy during the 3-back task by 13.4 % (p = .028) and decrease latency by 250 ms (p = .013). The increase in oxyhemoglobin was strongly correlated with increases in accuracy (p = .041) and decreases in latency during the 3-back span (p = .017). Taken together, anodal tDCS over the right DLPFC was found to regionally increase oxyhemoglobin concentrations and improve working memory performance in higher cognitive load conditions.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada.
| | - Torrey M Loucks
- Department of Communication Sciences and Disorders, School of Applied Health Sciences, Brooks Rehabilitation College of Healthcare Sciences, Jacksonville University - Palm Coast Campus, FL, United States
| | - Ada W S Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada; Department of Occupational Therapy, University of Alberta, Edmonton T6G 2G4, Alberta, Canada
| | - Esther S Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada; Department of Communication Sciences and Disorders, University of Alberta, Edmonton T6G 2G4, Alberta, Canada
| |
Collapse
|
2
|
MiRNA: Involvement of the MAPK Pathway in Ischemic Stroke. A Promising Therapeutic Target. MEDICINA-LITHUANIA 2021; 57:medicina57101053. [PMID: 34684090 PMCID: PMC8539390 DOI: 10.3390/medicina57101053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Ischemic stroke (IS) is a cerebrovascular disease with a high rate of disability and mortality. It is classified as the second leading cause of death that arises from the sudden occlusion of small vessels in the brain with consequent lack of oxygen and nutrients in the brain tissue. Following an acute ischemic event, the cascade of events promotes the activation of multiple signaling pathways responsible for irreversible neuronal damage. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to different stimuli, regulating proliferation, differentiation, inflammation, and apoptosis. Several lines of evidence showed that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease; indeed, it can impair blood–brain barrier (BBB) integrity and exacerbate neuroinflammation through the release of pro-inflammatory mediators implementing neurovascular damage after ischemic stroke. This review aims to illustrate the miRNAs involved in the regulation of MAPK in IS, in order to highlight possible targets for potential neuroprotective treatments. We also discuss some miRNAs (miR), including miR-145, miR-137, miR-493, and miR-126, that are important as they modulate processes such as apoptosis, neuroinflammation, neurogenesis, and angiogenesis through the regulation of the MAPK pathway in cerebral IS. To date, limited drug therapies are available for the treatment of IS; therefore, it is necessary to implement preclinical and clinical studies aimed at discovering novel therapeutic approaches to minimize post-stroke neurological damage.
Collapse
|
3
|
Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox Res 2021; 39:1338-1351. [PMID: 34057703 DOI: 10.1007/s12640-021-00379-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.
Collapse
|
4
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
5
|
Abstract
Pharmacologic and nonpharmacologic interventions are available to treat patients who experience serious elevations in intracranial pressure (ICP). In some cases, patients may experience ICP that is refractory to treatment. Significant negative effects on cerebral blood flow, tissue oxygenation, and cerebral metabolism occur as a result of intracranial hypertension, leading to secondary brain injury. In part 2 of this series, nonpharmacologic interventions for ICP and ICP refractory to treatment are discussed. Interventions include neurologic monitoring (bedside assessment and multimodal monitoring), ventilatory support, fluid and electrolyte maintenance, targeted temperature management, and surgical intervention. Technology is always evolving, and the focus of multimodal monitoring here includes devices to monitor ICP, brain tissue oxygen tension, and cerebral blood flow and cerebral microdialysis monitors. Nursing care of these patients includes perspicacious assessment and integration of data, monitoring ventilatory and hemodynamic functioning, and appropriate patient positioning. Nurses must collaborate with the interprofessional care team to ensure favorable patient outcomes while utilizing an evidence-based guideline for the management of ICP.
Collapse
|
6
|
Wood MD, Jacobson JA, Maslove DM, Muscedere JG, Boyd JG. The physiological determinants of near-infrared spectroscopy-derived regional cerebral oxygenation in critically ill adults. Intensive Care Med Exp 2019; 7:23. [PMID: 31049754 PMCID: PMC6497723 DOI: 10.1186/s40635-019-0247-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background To maintain adequate oxygen delivery to tissue, resuscitation of critically ill patients is guided by assessing surrogate markers of perfusion. As there is no direct indicator of cerebral perfusion used in routine critical care, identifying an accurate strategy to monitor brain perfusion is paramount. Near-infrared spectroscopy (NIRS) is a non-invasive technique to quantify regional cerebral oxygenation (rSO2) that has been used for decades during cardiac surgery which has led to targeted algorithms to optimize rSO2 being developed. However, these targeted algorithms do not exist during critical care, as the physiological determinants of rSO2 during critical illness remain poorly understood. Materials and methods This prospective observational study was an exploratory analysis of a nested cohort of patients within the CONFOCAL study (NCT02344043) who received high-fidelity vital sign monitoring. Adult patients (≥ 18 years) admitted < 24 h to a medical/surgical intensive care unit were eligible if they had shock and/or required mechanical ventilation. Patients underwent rSO2 monitoring with the FORESIGHT oximeter for 24 h, vital signs were concurrently recorded, and clinically ordered arterial blood gas samples and hemoglobin concentration were also documented. Simultaneous multiple linear regression was performed using all available predictors, followed by model selection using the corrected Akaike information criterion (AICc). Results Our simultaneous multivariate model included age, heart rate, arterial oxygen saturation, mean arterial pressure, pH, partial pressure of oxygen, partial pressure of carbon dioxide (PaCO2), and hemoglobin concentration. This model accounted for a significant proportion of variance in rSO2 (R2 = 0.58, p < 0.01) and was significantly associated with PaCO2 (p < 0.05) and hemoglobin concentration (p < 0.01). Our selected regression model using AICc accounted for a significant proportion of variance in rSO2 (R2 = 0.54, p < 0.01) and was significantly related to age (p < 0.05), PaCO2 (p < 0.01), hemoglobin (p < 0.01), and heart rate (p < 0.05). Conclusions Known and established physiological determinants of oxygen delivery accounted for a significant proportion of the rSO2 signal, which provides evidence that NIRS is a viable modality to assess cerebral oxygenation in critically ill adults. Further elucidation of the determinants of rSO2 has the potential to develop a NIRS-guided resuscitation algorithm during critical illness. Trial registration This trial is registered on clinicaltrials.gov (Identifier: NCT02344043), retrospectively registered January 8, 2015. Electronic supplementary material The online version of this article (10.1186/s40635-019-0247-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael D Wood
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Botterell Hall, Kingston, ON, Canada
| | - Jill A Jacobson
- Department of Psychology, Queen's University, 62 Arch Street, 318 Craine Hall, Kingston, ON, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Rm 22.2.359 Davies 2, Kingston General Hospital, 76 Stuart St, Kingston, ON, K7L 2V7, Canada.,Department of Medicine, Queen's University, Rm 4.5.310 Watkins C, Kingston General Hospital, 76 Stuart St, Kingston, ON, Canada
| | - John G Muscedere
- Department of Critical Care Medicine, Queen's University, Rm 22.2.359 Davies 2, Kingston General Hospital, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| | - J Gordon Boyd
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Botterell Hall, Kingston, ON, Canada. .,Department of Critical Care Medicine, Queen's University, Rm 22.2.359 Davies 2, Kingston General Hospital, 76 Stuart St, Kingston, ON, K7L 2V7, Canada. .,Department of Medicine, Queen's University, Rm 4.5.310 Watkins C, Kingston General Hospital, 76 Stuart St, Kingston, ON, Canada.
| | | |
Collapse
|
7
|
Xu L, Jia L, Wang Q, Hou J, Li S, Teng J. Salidroside attenuates hypoxia/reoxygenation-induced human brain vascular smooth muscle cell injury by activating the SIRT1/FOXO3α pathway. Exp Ther Med 2017; 15:822-830. [PMID: 29434685 PMCID: PMC5772920 DOI: 10.3892/etm.2017.5446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
It has been reported that salidroside (SAL), a natural dietary isothiocyanate, exhibits neuroprotective roles in cerebral ischemia-reperfusion injury. However, to the best of our knowledge, its underlying protective mechanism remains unknown. Sirtuin 1 (SIRT1) is a class III histone deacetylase involved in a variety of cellular functions. SIRT1 has been identified as a mediator of cerebral ischemia and may induce neuroprotection by activating various intracellular downstream targets, such as forkhead box protein O3α (FOXO3α). Therefore, the present study aimed to investigate whether SAL protects human brain vascular smooth muscle cells (HBVSMC) against hypoxia/reoxygenation (H/R) injury, which is a cell model of cerebral ischemia-reperfusion injury, through regulating the SIRT1-activited signaling pathway. The present study revealed that H/R treatment significantly reduced the expression of SIRT1 protein in HBVSMCs. Additionally, pretreatment with SAL reversed the H/R-induced decrease in cellular viability, increased caspase-3 activity, the appearance of apoptotic cells and the apoptosis rate in HBVSMCs. SAL attenuated the H/R-induced decrease in the expression of SIRT1 and phosphorylated FOXO3α protein in HBVSMCs, suggesting that the protective role of SAL in H/R injury occurs via the SIRT1/FOXO3α pathway. Furthermore, sirtinol, a SIRT1-specific inhibitor, suppressed the inhibitory effects of SAL on H/R-induced cytotoxicity and apoptosis as indicated by the downregulation of cell viability and upregulation of caspase-3 activity and apoptosis rate induced by sirtinol treatment in HBVSMCs. The reversal effects of SAL on H/R-induced alternation of B-cell lymphoma (Bcl-2) and Bcl-2 associated X protein expression were also attenuated by sirtinol. These results suggest that SAL exhibits neuroprotective effects against H/R injury by activating the SIRT1/FOXO3α pathway, which may become a novel potential therapeutic target for the treatment of cerebral ischemic disease.
Collapse
Affiliation(s)
- Lina Xu
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China.,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Longbin Jia
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Qingyun Wang
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Jing Hou
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Shifang Li
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|