1
|
Lagreca I, Nasillo V, Barozzi P, Castelli I, Basso S, Castellano S, Paolini A, Maccaferri M, Colaci E, Vallerini D, Natali P, Debbia D, Pirotti T, Ottomano AM, Maffei R, Bettelli F, Giusti D, Messerotti A, Gilioli A, Pioli V, Leonardi G, Forghieri F, Bresciani P, Cuoghi A, Morselli M, Manfredini R, Longo G, Candoni A, Marasca R, Potenza L, Tagliafico E, Trenti T, Comoli P, Luppi M, Riva G. Prognostic Relevance of Multi-Antigenic Myeloma-Specific T-Cell Assay in Patients with Monoclonal Gammopathies. Cancers (Basel) 2023; 15:cancers15030972. [PMID: 36765928 PMCID: PMC9913154 DOI: 10.3390/cancers15030972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Ilaria Castelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Castellano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Ambra Paolini
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Elisabetta Colaci
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Daniela Vallerini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Daria Debbia
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Pirotti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Anna Maria Ottomano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Rossana Maffei
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Giovanna Leonardi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Paola Bresciani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Angela Cuoghi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Monica Morselli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Longo
- Department of Oncology and Hematology, AOU Modena, 41124 Modena, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Enrico Tagliafico
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Trenti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| | - Giovanni Riva
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| |
Collapse
|
3
|
Mall R, Saad M, Roelands J, Rinchai D, Kunji K, Almeer H, Hendrickx W, M Marincola F, Ceccarelli M, Bedognetti D. Network-based identification of key master regulators associated with an immune-silent cancer phenotype. Brief Bioinform 2021; 22:6274817. [PMID: 33979427 PMCID: PMC8574720 DOI: 10.1093/bib/bbab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
A cancer immune phenotype characterized by an active T-helper 1 (Th1)/cytotoxic response is associated with responsiveness to immunotherapy and favorable prognosis across different tumors. However, in some cancers, such an intratumoral immune activation does not confer protection from progression or relapse. Defining mechanisms associated with immune evasion is imperative to refine stratification algorithms, to guide treatment decisions and to identify candidates for immune-targeted therapy. Molecular alterations governing mechanisms for immune exclusion are still largely unknown. The availability of large genomic datasets offers an opportunity to ascertain key determinants of differential intratumoral immune response. We follow a network-based protocol to identify transcription regulators (TRs) associated with poor immunologic antitumor activity. We use a consensus of four different pipelines consisting of two state-of-the-art gene regulatory network inference techniques, regularized gradient boosting machines and ARACNE to determine TR regulons, and three separate enrichment techniques, including fast gene set enrichment analysis, gene set variation analysis and virtual inference of protein activity by enriched regulon analysis to identify the most important TRs affecting immunologic antitumor activity. These TRs, referred to as master regulators (MRs), are unique to immune-silent and immune-active tumors, respectively. We validated the MRs coherently associated with the immune-silent phenotype across cancers in The Cancer Genome Atlas and a series of additional datasets in the Prediction of Clinical Outcomes from Genomic Profiles repository. A downstream analysis of MRs specific to the immune-silent phenotype resulted in the identification of several enriched candidate pathways, including NOTCH1, TGF-$\beta $, Interleukin-1 and TNF-$\alpha $ signaling pathways. TGFB1I1 emerged as one of the main negative immune modulators preventing the favorable effects of a Th1/cytotoxic response.
Collapse
Affiliation(s)
- Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jessica Roelands
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
| | - Darawan Rinchai
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
| | - Khalid Kunji
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Hossam Almeer
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Wouter Hendrickx
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
| | | | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Via Claudio 21, 80215 Naples, Italy.,Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, Ariano Irpino (AV)
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar.,Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|