1
|
Sheikh E, Agrawal K, Roy S, Burk D, Donnarumma F, Ko YH, Guttula PK, Biswal NC, Shukla HD, Gartia MR. Multimodal Imaging of Pancreatic Cancer Microenvironment in Response to an Antiglycolytic Drug. Adv Healthc Mater 2023; 12:e2301815. [PMID: 37706285 PMCID: PMC10842640 DOI: 10.1002/adhm.202301815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling and associated pathways through bioinformatics analysis.
Collapse
Affiliation(s)
- Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kirti Agrawal
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sanjit Roy
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Burk
- Department of Cell Biology and Bioimaging, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Young H Ko
- NewG Lab Pharma, 701 East Pratt Street, Columbus Center, Baltimore, MD, 21202, USA
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hem D Shukla
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
2
|
McBrearty N, Cho C, Chen J, Zahedi F, Peck AR, Radaelli E, Assenmacher CA, Pavlak C, Devine A, Yu P, Lu Z, Zhang H, Li J, Pitarresi JR, Astsaturov I, Cukierman E, Rustgi AK, Stanger BZ, Rui H, Fuchs SY. Tumor-Suppressive and Immune-Stimulating Roles of Cholesterol 25-hydroxylase in Pancreatic Cancer Cells. Mol Cancer Res 2023; 21:228-239. [PMID: 36378658 PMCID: PMC9992122 DOI: 10.1158/1541-7786.mcr-22-0602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.
Collapse
Affiliation(s)
- Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyun Chen
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farima Zahedi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarice Pavlak
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Devine
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason R. Pitarresi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Edna Cukierman
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ben Z. Stanger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Zhong Q, Zhang K, Huang X, Lu Y, Zhao J, He Y, Liu B. In situ ratiometric SERS imaging of intracellular protease activity for subtype discrimination of human breast cancer. Biosens Bioelectron 2022; 207:114194. [PMID: 35325718 DOI: 10.1016/j.bios.2022.114194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Accurate discrimination between different cells at the molecular level is of fundamental importance for disease diagnosis. Endogenous proteases are such molecular candidates for cancer cell subtype study. But in situ probing their activity in live cells remains challenging for surface-enhanced Raman scattering (SERS). Here, we present a sensitive ratio-type SERS nanoprobe for imaging of matrix metalloproteinase-2 (MMP-2) in different cancer cells subtypes. The nanoprobe contained three components: a plasmon-active gold nanoparticle as the SERS enhancing matrix, Raman dye rhodamine B (Rh B)-labelled substrate peptides as the specific MMP-2 recognizer, and 2-naphthalenethiol (2-NT) as the internal standard. MMP-2-responsive cleavage of peptides from the nanoprobe surface results in decrease or even disappearance of SERS emission of Rh B, which was ratioed over the emission of 2-NT for the quantification of MMP-2 activity. Both in-tube assay and in-cell imaging results show that the MMP-responsive nanoprobe can work and serve to differentiate the normal breast cells from the tumorous ones, to differentiate two breast cancer cell subtypes with a different degree of malignancy. We believe that this SERS nanoprobe could find a wide application in the fields of tumor biology and accurate disease diagnosis.
Collapse
Affiliation(s)
- Qingmei Zhong
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Jinzhi Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Ying He
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Gunda V, Genaro-Mattos TC, Kaushal JB, Chirravuri-Venkata R, Natarajan G, Mallya K, Grandgenett PM, Mirnics K, Batra SK, Korade Z, Rachagani S. Ubiquitous Aberration in Cholesterol Metabolism across Pancreatic Ductal Adenocarcinoma. Metabolites 2022; 12:metabo12010047. [PMID: 35050168 PMCID: PMC8779872 DOI: 10.3390/metabo12010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.
Collapse
Affiliation(s)
- Venugopal Gunda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA; (T.C.G.-M.); (K.M.)
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Ramakanth Chirravuri-Venkata
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA; (T.C.G.-M.); (K.M.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
- Correspondence: ; Tel.: +1-(402)559-3312; Fax: +1-(402)559-6650
| |
Collapse
|
5
|
Zheng C, Zhu Y, Liu Q, Luo T, Xu W. Maprotiline Suppresses Cholesterol Biosynthesis and Hepatocellular Carcinoma Progression Through Direct Targeting of CRABP1. Front Pharmacol 2021; 12:689767. [PMID: 34093212 PMCID: PMC8172778 DOI: 10.3389/fphar.2021.689767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death and has a poor prognosis worldwide, thus, more effective drugs are urgently needed. In this article, a small molecule drug library composed of 1,056 approved medicines from the FDA was used to screen for anticancer drugs. The tetracyclic compound maprotiline, a highly selective noradrenergic reuptake blocker, has strong antidepressant efficacy. However, the anticancer effect of maprotiline remains unclear. Here, we investigated the anticancer potential of maprotiline in the HCC cell lines Huh7 and HepG2. We found that maprotiline not only significantly restrained cell proliferation, colony formation and metastasis in vitro but also exerted antitumor effects in vivo. In addition to the antitumor effect alone, maprotiline could also enhance the sensitivity of HCC cells to sorafenib. The depth studies revealed that maprotiline substantially decreased the phosphorylation of sterol regulatory element-binding protein 2 (SREBP2) through the ERK signaling pathway, which resulted in decreased cholesterol biosynthesis and eventually impeded HCC cell growth. Furthermore, we identified cellular retinoic acid binding protein 1 (CRABP1) as a direct target of maprotiline. In conclusion, our study provided the first evidence showing that maprotiline could attenuate cholesterol biosynthesis to inhibit the proliferation and metastasis of HCC cells through the ERK-SREBP2 signaling pathway by directly binding to CRABP1, which supports the strategy of repurposing maprotiline in the treatment of HCC.
Collapse
Affiliation(s)
- Cancan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yidong Zhu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qinwen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tingting Luo
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenwen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Ferrarelli LK. In PDAC, “bad” cholesterol is good. Sci Signal 2020. [DOI: 10.1126/scisignal.abf5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
LDL-lowering statins can promote the development of an aggressive subtype of pancreatic cancer.
Collapse
|