1
|
Chang X, Zhao J, Zhou Y, Guo M, Yan Y, Wang Y, Zhao X, Yang J, Chen C, Tang L, Qin M, Xu L. MiR-7 deficiency promotes Th1 polarization of CD4 +T cells and enhances the antitumor effect in adoptive cell therapy for lung cancer. Immunol Res 2024; 72:134-146. [PMID: 37755574 DOI: 10.1007/s12026-023-09423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Adoptive-cell-therapy (ACT) is important therapeutic approach against cancer. We previously showed that miR-7 deficiency endowed CD4+T cells with hyperactivation status in liver injury. However, whether CD4+T cells with miR-7 deficiency could elicit antitumor effect in ACT is still unclear. Naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice and transferred into syngeneic CD45.1WT mice bearing with lung tumor cells. The infiltration and function of T cells were measured by FCM and immunofluorescence assay. And naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice, then the cells were activated with CD3 antibody plus CD28 antibody in vitro for 24 h. Then, the cultured supernatant of LLC tumor cells or cytokines IFN-γ and IL-12 was added to establish Th1 polarization. Under these conditions, Th1 polarization-related molecules in these cells were analyzed by flow cytometry. Our data demonstrated a significant reduction in the growth and metastasis of lung cancer cells in the miR-7def CD4+T cell-transferred group, accompanied by a significant enhancement in the infiltration, proliferation, activation, and Th1 polarization of CD4+ T cells. Moreover, we observed the proliferation; activation of tumor-infiltrating CD8+ T cells was significantly increased in the local tumor of the CD45.2 miR-7def CD4+ T cell-transferred group, compared to the CD45.2 WT CD4+ T cell-transferred group. It is noteworthy that MAPK4, a target molecule of miR-7, was upregulated in CD4+ T cells from lung tumor tissues, resulting in an altered transduction of phosphorylation of NF-κB as well as AKT and ERK in vivo and in vitro. miR-7 deficiency promoted Th1-polarization of CD4+ T cells and elicited effective antitumor immune responses in ACT.
Collapse
Affiliation(s)
- Xian Chang
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Ya Zhou
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Mengmeng Guo
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Medical physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yaping Yan
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Wang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Yang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Chao Chen
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Tang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ming Qin
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umaña P, Klein C, Hanahan D. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8 + T cells and reprogramming macrophages. Immunity 2023; 56:162-179.e6. [PMID: 36630914 DOI: 10.1016/j.immuni.2022.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1+ T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8+ T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1+ stem-like T cells.
Collapse
Affiliation(s)
- Mélanie Tichet
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Stephan Wullschleger
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| | - Agnieszka Chryplewicz
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Krisztian Homicsko
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland; Department of Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland; Center for Personalized Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland
| | | | - Pablo Umaña
- Roche-Innovation Center Zurich, 8952 Schlieren, Switzerland
| | | | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland.
| |
Collapse
|
4
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|