1
|
Li Q, Zhang C, Wang R, Keller BB, Gu H. Pulmonary hypertensive crisis in children with pulmonary arterial hypertension undergoing cardiac catheterization. Pulm Circ 2022; 12:e12067. [PMID: 35514786 PMCID: PMC9063957 DOI: 10.1002/pul2.12067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
Pediatric patients with pulmonary arterial hypertension (PAH) are considered to be at risk for pulmonary hypertensive crisis (PHC) or even death during right heart catheterization (RHC). This retrospective study was designed to identify the risks and clinical characteristics associated with PHC in pediatric PAH patients. We included 163 consecutive procedures from 147 pediatric patients diagnosed with PAH who underwent diagnostic RHC in Beijing Anzhen Hospital between January 2007 and December 2020. The average patient age was 9.0 ± 4.7 years and 84 (51.5%) were females. Before RHC, over 20% of patients were in New York Heart Association (NYHA) class III-IV. Sedation or general intravenous anesthesia was used in 103 procedures (63.2%), with spontaneous breathing in 93.2%. PHC occurred in 19 patients (11.7%), 5 (3.1%) required cardiac compression, and 1 died (0.6%). Compared to patients without PHC, those who experienced PHC were more likely to be in NYHA class III-IV (p = 0.012) before RHC, require sedation (p = 0.011), had echocardiographic indices of higher peak tricuspid regurgitation velocity (p = 0.018), and right ventricle (RV) to left ventricle (LV) ratio (p < 0.001). Multivariate logistic regression for PHC identified the need for sedation and a higher RV/LV ratio as independent predictors. In conclusion, the risk of RHC remains significant in children with PAH, particularly in those with severe RV dilation who require sedation during cardiac catheterization. Comprehensive evaluation, close monitoring, and appropriate treatment before and during the procedure are essential for reducing mortality.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Pediatric Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Chen Zhang
- Department of Pediatric Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Rong Wang
- Center for Anesthesiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Bradley B. Keller
- Greater Louisville and Western Kentucky PracticeCincinnati Children's Heart InstituteLouisvilleKentuckyUSA
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Weichert J, Weichert A. A 'holistic' sonographic view on congenital heart disease - How automatic reconstruction using fetal intelligent navigation echocardiography (FINE) eases the unveiling of abnormal cardiac anatomy part I: Right heart anomalies. Echocardiography 2021; 38:1430-1445. [PMID: 34232534 DOI: 10.1111/echo.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022] Open
Abstract
Attempting a comprehensive examination of the fetal heart remains challenging for unexperienced operators as it emphasizes the acquisition and documentation of sequential cross-sectional and sagittal views and inevitably results in diminished detection rates of fetuses affected by congenital heart disease. The introduction of four-dimensional spatio-temporal image correlation (4D STIC) technology facilitated a volumetric approach for thorough cardiac anatomic evaluation by the acquisition of cardiac 4D datasets. By analyzing and re-arranging of numerous frames according to their temporal event within the heart cycle, STIC allows visualization of cardiac structures as an endless cine loop sequence of a complete single cardiac cycle in motion. However, post-analysis with manipulation and repeated slicing of the volume usually requires experience and in-depth anatomic knowledge, which limits the widespread application of this advanced technique in clinical care and unfortunately leads to the underestimation of its diagnostic value to date. Fetal intelligent navigation echocardiography (FINE), a novel method that automatically generates and displays nine standard fetal echocardiographic views in normal hearts, has shown to be able to overcome these limitations. Very recent data on the detection of congenital heart defects (CHDs) using the FINE method revealed a high sensitivity and specificity of 98% and 93%, respectively. In this two-part manuscript, we focused on the performance of FINE in delineating abnormal anatomy of typical right and left heart lesions and thereby emphasized the educational potential of this technology for more than just teaching purposes. We further discussed recent findings in a pathophysiological and/or functional context.
Collapse
Affiliation(s)
- Jan Weichert
- Department of Gynecology & Obstetrics, Division of Prenatal Medicine, Campus Luebeck, University Hospital of Schleswig-Holstein, Luebeck, Schleswig-Holstein, Germany
| | - Alexander Weichert
- Elbe Center of Prenatal Medicine and Human Genetics, Hamburg, Germany.,Department of Obstetrics, Charité-Universitätsmedizin Berlin - CCM, Berlin, Germany.,Prenatal Medicine Bergmannstrasse, Berlin, Germany
| |
Collapse
|
3
|
Kameny RJ, He Y, Zhu T, Gong W, Raff GW, Chapin CJ, Datar SA, Boehme JT, Hata A, Fineman JR. Analysis of the microRNA signature driving adaptive right ventricular hypertrophy in an ovine model of congenital heart disease. Am J Physiol Heart Circ Physiol 2018; 315:H847-H854. [PMID: 29906222 DOI: 10.1152/ajpheart.00057.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The right ventricular (RV) response to pulmonary arterial hypertension (PAH) is heterogeneous. Most patients have maladaptive changes with RV dilation and RV failure, whereas some, especially patients with PAH secondary to congenital heart disease, have an adaptive response with hypertrophy and preserved systolic function. Mechanisms for RV adaptation to PAH are unknown, despite RV function being a primary determinant of mortality. In our congenital heart disease ovine model with fetally implanted aortopulmonary shunt (shunt lambs), we previously demonstrated an adaptive physiological RV response to increased afterload with hypertrophy. In the present study, we examined small noncoding microRNA (miRNA) expression in shunt RV and characterized downstream effects of a key miRNA. RV tissue was harvested from 4-wk-old shunt and control lambs ( n = 5), and miRNA, mRNA, and protein were quantitated. We found differential expression of 40 cardiovascular-specific miRNAs in shunt RV. Interestingly, this miRNA signature is distinct from models of RV failure, suggesting that miRNAs might contribute to adaptive RV hypertrophy. Among RV miRNAs, miR-199b was decreased in the RV with eventual downregulation of nuclear factor of activated T cells/calcineurin signaling. Furthermore, antifibrotic miR-29a was increased in the shunt RV with a reduction of the miR-29 targets collagen type A1 and type 3A1 and decreased fibrosis. Thus, we conclude that the miRNA signature specific to shunt lambs is distinct from RV failure and drives gene expression required for adaptive RV hypertrophy. We propose that the adaptive RV miRNA signature may serve as a prognostic and therapeutic tool in patients with PAH to attenuate or prevent progression of RV failure and premature death. NEW & NOTEWORTHY This study describes a novel microRNA signature of adaptive right ventricular hypertrophy, with particular attention to miR-199b and miR-29a.
Collapse
Affiliation(s)
| | - Youping He
- Department of Pediatrics, University of California , San Francisco, California
| | - Terry Zhu
- Department of Pediatrics, University of California , San Francisco, California
| | - Wenhui Gong
- Department of Pediatrics, University of California , San Francisco, California
| | - Gary W Raff
- Department of Surgery, University of California , Davis, California
| | - Cheryl J Chapin
- Department of Pediatrics, University of California , San Francisco, California
| | - Sanjeev A Datar
- Department of Pediatrics, University of California , San Francisco, California
| | - Jason T Boehme
- Department of Pediatrics, University of California , San Francisco, California
| | - Akiko Hata
- Cardiovascular Research Institute, University of California , San Francisco, California.,Department of Biochemistry and Biophysics, University of California , San Francisco, California
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California , San Francisco, California.,Cardiovascular Research Institute, University of California , San Francisco, California
| |
Collapse
|
4
|
Ferrando-Castagnetto F, Ricca-Mallada R, Selios V, Ferrando R. Atrial Arrhythmias and Scintigraphic "D-shape" Sign in Pulmonary Artery Hypertension. World J Nucl Med 2017; 16:75-77. [PMID: 28217026 PMCID: PMC5314670 DOI: 10.4103/1450-1147.181152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pulmonary hypertension significantly changes biventricular anatomy and physiology, frequently evolving to clinical deterioration and right ventricular failure. The case of a woman developing atrial arrhythmias complicating dipyridamole stress in concomitance with scintigraphic “D-shaped” left ventricle is briefly reported. Although rare, our finding may suggest that nonselective vasodilators should be used with caution in this clinical setting.
Collapse
Affiliation(s)
- Federico Ferrando-Castagnetto
- Department of Cardiology, University Cardiovascular Center, School of Medicine, Republic University, Montevideo, Uruguay
| | - Roberto Ricca-Mallada
- Department of Cardiology, University Cardiovascular Center, School of Medicine, Republic University, Montevideo, Uruguay
| | - Valentina Selios
- Nuclear Medicine and Molecular Imaging Center, School of Medicine, Republic University, Montevideo, Uruguay
| | - Rodolfo Ferrando
- Nuclear Medicine and Molecular Imaging Center, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
5
|
Riveros R, Riveros-Perez E. Perioperative Considerations for Children With Right Ventricular Dysfunction and Failing Fontan. Semin Cardiothorac Vasc Anesth 2015; 19:187-202. [PMID: 26287019 DOI: 10.1177/1089253215593178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The survival of patients with congenital heart diseases (CHD) has increased in the past decades, resulting in the identification of new characteristics of chronic comorbidities observed in pediatric and adults with CHD. Patients with CHD can present with a broad clinical spectrum of manifestations of congestive heart failure (CHF) at any point throughout their lives that may be related to anatomical or surgical variables. This article focuses on the perioperative assessment of patients with CHD and CHF, with an emphasis on pathophysiologic, diagnostic, and therapeutic alternatives in patients with right ventricular failure and failing Fontan circulation. We also provide descriptions of the effects of sedatives and anesthetics commonly used in this population in diagnostic or invasive procedures.
Collapse
|
6
|
Johnson RC, Datar SA, Oishi PE, Bennett S, Maki J, Sun C, Johengen M, He Y, Raff GW, Redington AN, Fineman JR. Adaptive right ventricular performance in response to acutely increased afterload in a lamb model of congenital heart disease: evidence for enhanced Anrep effect. Am J Physiol Heart Circ Physiol 2014; 306:H1222-30. [PMID: 24561861 DOI: 10.1152/ajpheart.01018.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patients with pulmonary hypertension associated with congenital heart disease survive longer with preserved right ventricular (RV) function compared with those with primary pulmonary hypertension. The purpose of this study was to test the hypothesis that superior RV performance can be demonstrated, at baseline and when challenged with increased RV afterload, in lambs with chronic left-to-right cardiac shunts compared with control lambs. A shunt was placed between the pulmonary artery and the aorta in fetal lambs (shunt). RV pressure-volume loops were obtained 4 wk after delivery in shunt and control lambs, before and after increased afterload was applied using pulmonary artery banding (PAB). Baseline stroke volume (8.7 ± 1.8 vs. 15.8 ± 2.7 ml, P = 0.04) and cardiac index (73.0 ± 4.0 vs. 159.2 ± 25.1 ml·min(-1)·kg(-1), P = 0.02) were greater in shunts. After PAB, there was no difference in the change in cardiac index (relative to baseline) between groups; however, heart rate (HR) was greater in controls (168 ± 7.3 vs. 138 ± 6.6 beats/min, P = 0.01), and end-systolic elastance (Ees) was greater in shunts (2.63 vs. 1.31 × baseline, P = 0.02). Control lambs showed decreased mechanical efficiency (71% baseline) compared with shunts. With acute afterload challenge, both controls and shunts maintained cardiac output; however, this was via maladaptive responses in controls, while shunts maintained mechanical efficiency and increased contractility via a proposed enhanced Anrep effect-the second, slow inotropic response in the biphasic ventricular response to increased afterload, a novel finding in the RV. The mechanisms related to these physiological differences may have important therapeutic implications.
Collapse
Affiliation(s)
- Rebecca C Johnson
- Department of Pediatrics, University of California, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guihaire J, Haddad F, Boulate D, Capderou A, Decante B, Flécher E, Eddahibi S, Dorfmüller P, Hervé P, Humbert M, Verhoye JP, Dartevelle P, Mercier O, Fadel E. Right ventricular plasticity in a porcine model of chronic pressure overload. J Heart Lung Transplant 2014; 33:194-202. [DOI: 10.1016/j.healun.2013.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022] Open
|
8
|
von Knobelsdorff-Brenkenhoff F, Tkachenko V, Winter L, Rieger J, Thalhammer C, Hezel F, Graessl A, Dieringer MA, Niendorf T, Schulz-Menger J. Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2013; 15:23. [PMID: 23497030 PMCID: PMC3621368 DOI: 10.1186/1532-429x-15-23] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV. METHODS Nine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2 x 1.2 x 6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2 x 1.2 x 6) mm3 and (1.3 x 1.3 x 4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views. RESULTS All scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3 x 1.3 x 4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3 x 1.3 x 4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2 ± 9.3 ml) and to FGRE at 7T with voxel size (1.2 x 1.2 x 6) mm3 (mean difference of RVEDV 9.3 ± 8.6 ml). CONCLUSIONS FGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Valeriy Tkachenko
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Rieger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Christof Thalhammer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Matthias A Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jeanette Schulz-Menger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| |
Collapse
|
9
|
|