1
|
Chen S, Xiao M, Hou Z, Li Z, Hu J, Guo J, Chen J, Yang L, Na Q. Functionalized TMC and ε-CL elastomers with shape memory and self-healing properties. Front Bioeng Biotechnol 2023; 11:1298723. [PMID: 38033822 PMCID: PMC10687579 DOI: 10.3389/fbioe.2023.1298723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Smart elastomers, which possess self-healing and shape memory capabilities, have immense potential in the field of biomedical applications. Polycarbonates and polyesters have gained widespread interest due to their remarkable biocompatibility over the last century. Nevertheless, the lack of functional versatility in conventional polyesters and polycarbonates means that they fall short of meeting the ever-evolving demands of the future. Methods: This paper introduced a new smart elastomer, named mPEG43-b-(PMBC-co-PCL)n, developed from polyester and polycarbonate blends, that possessed shape memory and self-heal capabilities via a physical crosslinking system. Results: The material demonstrated a significant tensile strength of 0.38 MPa and a tensile ratio of 1155.6%, highlighting its favorable mechanical properties. In addition, a conspicuous shape retrieval rate of 93% was showcased within 32.5 seconds at 37°C. Remarkably, the affected area could be repaired proficiently with no irritation experienced during 6h at room temperature, which was indicative of an admirable repair percentage of 87.6%. Furthermore, these features could be precisely modified by altering the proportion of MBC and ε-CL to suit individual constraints. Discussion: This innovative elastomer with exceptional shape memory and self-heal capabilities provides a solid basis and promising potential for the development of self-contracting intelligent surgical sutures in the biomedical field.
Collapse
Affiliation(s)
- Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Miaomiao Xiao
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongcun Li
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jing Guo
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
3
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang S, Zhou R, Hou Y, Wang M, Hou X. Photochemical effect driven fluid behavior control in microscale pores and channels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Johnson AP, Sabu C, Nivitha K, Sankar R, Shirin VA, Henna T, Raphey V, Gangadharappa H, Kotta S, Pramod K. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J Control Release 2022; 343:724-754. [DOI: 10.1016/j.jconrel.2022.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
6
|
Li Y, Tu L, Ma X, Chen H, Fan Y, Zhou Q, Sun Y. Engineering a Smart Nanofluidic Sensor for High-Performance Peroxynitrite Sensing through a Spirocyclic Ring Open/Close Reaction Strategy. ACS Sens 2021; 6:808-814. [PMID: 33480688 DOI: 10.1021/acssensors.0c01719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxynitrite (ONOO-) is an important reactive oxygen/nitrogen species that participates in a range of physiological and pathological processes by modulating ion flux through biological channels. Inspired by a ONOO--regulated K+ channel in vivo, herein, we describe the construction of a smart ONOO--driven nanosensor using a spirocyclic ring open/close reaction approach. The prepared nanosensor possessed a prominent ONOO- selectivity and sensitivity and rapid response (∼90 s) owing to the specific reaction between ONOO- and ligands on the nanosensor surface with a high ion rectification ratio (∼10) and ion gating ratio (∼4). Moreover, this nanosensor system also exhibits excellent stability and recyclability. Thus, these results will provide a new direction for the design of nanochannel-based sensors for future practical and biological applications.
Collapse
Affiliation(s)
- Yangyan Li
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
| | - Le Tu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xin Ma
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Huan Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjing 300191, China
| | - Yifan Fan
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhou
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
7
|
Facile scalable one-step wet-spinning of surgical sutures with shape memory function and antibacterial activity for wound healing. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Badv M, Weitz JI, Didar TF. Lubricant-Infused PET Grafts with Built-In Biofunctional Nanoprobes Attenuate Thrombin Generation and Promote Targeted Binding of Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905562. [PMID: 31773877 DOI: 10.1002/smll.201905562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/02/2019] [Indexed: 05/21/2023]
Abstract
New surface coatings that enhance hemocompatibility and biofunctionality of synthetic vascular grafts such as expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethylene terephthalate) (PET) are urgently needed. Lubricant-infused surfaces prevent nontargeted adhesion and enhance the biocompatibility of blood-contacting surfaces. However, limited success has been made in incorporating biofunctionality onto these surfaces and generating biofunctional lubricant-infused coatings that both prevent nonspecific adhesion and enhance targeted binding of biomolecules remains a challenge. Here, a new generation of fluorosilanized lubricant-infused PET surfaces with built-in biofunctional nanoprobes is reported. These surfaces are synthesized by starting with a self-assembled monolayer of fluorosilane that is partially etched using plasma modification technique, thereby creating a hydroxyl-terminated fluorosilanized PET surface. Simultaneously, silanized nanoprobes are produced by amino-silanizing anti-CD34 antibody in solution and directly coupling the anti-CD34-aminosilane nanoprobes onto the hydroxyl terminated, fluorosilanized PET surface. The PET surfaces are then lubricated, creating fluorosilanized biofunctional lubricant-infused PET substrates. Compared with unmodified PET surfaces, the designed biofunctional lubricant-infused PET surfaces significantly attenuate thrombin generation and blood clot formation and promote targeted binding of endothelial cells from human whole blood.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Thrombosis & Atherosclerosis Research Institute, 237 Barton Street East, L8L 2X2, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Guo T, Meng T, Yang G, Wang Y, Su R, Zhou S. Dynamic Hybrid Colloidosomes via Electrostatic Interactions for pH-Balanced Low Premature Leakage and Ultrafast Cargo Release. NANO LETTERS 2019; 19:6065-6071. [PMID: 31448623 DOI: 10.1021/acs.nanolett.9b01949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A trade-off between minimized premature leakage and rapid cargo release on demand is an intractable obstacle faced by smart delivery systems that restrains them from lab to market. To address this dilemma, dynamic hybrid colloidosomes relying on strong yet reversible electrostatic interactions are developed, simply through one-pot cooperative self-assembly of silica nanoparticles and fluorescent carbon dots at the interface of emulsion droplets. Specifically, pH-driven charge reversal of zwitterionic carbon dots leads to immediate electrostatic conversion between the two building blocks from attraction to repulsion. This makes robust locking and instantaneous breakdown of the colloidosomes subtly balanced, thus enabling low off-state leakage (10.5% over 7 days) while ultrafast on-state release (>90% within 5 min) upon an acidic stimulus. We envision that such biocompatible, traceable, and smart colloidosomes will offer unique opportunities for broad applications as on-demand release is desired.
Collapse
|
10
|
Kankala RK, Zhao J, Liu CG, Song XJ, Yang DY, Zhu K, Wang SB, Zhang YS, Chen AZ. Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901397. [PMID: 31066236 PMCID: PMC6750270 DOI: 10.1002/smll.201901397] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/12/2019] [Indexed: 05/19/2023]
Abstract
Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jia Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiao-Jie Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
11
|
Zhang J, Li Z, Zhan K, Sun R, Sheng Z, Wang M, Wang S, Hou X. Two dimensional nanomaterial-based separation membranes. Electrophoresis 2019; 40:2029-2040. [PMID: 30968445 DOI: 10.1002/elps.201800529] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 11/07/2022]
Abstract
Two dimensional nanomaterials including graphene, hexagonal boron-nitride, molybdenum disulfide, etc., provide immense potentials for separation applications. However, the tradeoff between selectivity and permeability in choosing 2D nanomaterial-based membrane is inevitable, limiting the progress on separation efficiency for mass industrial applications. To target these issues, versatile strategies such as the rational design of predefined interlayer channels, membrane nanopores, and reasonable functionalization, as well as new mechanisms have been emerged. In this review, we introduce the recent progress on separation mechanisms of 2D nanomaterial-based membranes with different structures (including the interlayer channels type and the membrane nanopores type) and their inner surface functionalization. Moreover, the interface designs are discussed, in terms of employing dynamic liquid-liquid/liquid-gas interfaces, to advance the selectivity and permeability of the membranes. We further discuss the variety of separation applications based on 2D nanomaterial-based membranes. The authors hope this review will inspire the active interest of many scientists in the area of the development and application of membrane science.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China
| | - Ziyi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China
| | - Kan Zhan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China.,Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, P. R. China
| | - Runqing Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China
| | - Zhizhi Sheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China.,Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, P. R. China
| | - Miao Wang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Shuli Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China.,Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, P. R. China
| | - Xu Hou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China.,Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, P. R. China.,Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, P. R. China.,Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
12
|
Deng L, He X, Xie K, Xie L, Deng Y. Dual Therapy Coating on Micro/Nanoscale Porous Polyetheretherketone to Eradicate Biofilms and Accelerate Bone Tissue Repair. Macromol Biosci 2018; 19:e1800376. [PMID: 30549406 DOI: 10.1002/mabi.201800376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/29/2018] [Indexed: 12/15/2022]
Abstract
Defective osteogenesis and latent infections continue to be two major issues in the therapy of bone tissue regeneration. In this study, a unique hierarchically micro/nanoscale-architecture is first proposed and produced on polyetheretherketone (PEEK). Besides, a "simvastatin-PLLA film-tobramycin microspheres" delivery system is subsequently fabricated to endow the PEEK implant with osteogenic and antibacterial capabilities. In vitro antibacterial evaluations confirm that the decorated PEEK scaffolds possess excellent resistance against planktonic/adherent bacteria. In vitro cell attachment/proliferation, lactate dehydrogenase (LDH) content, alkaline phosphatase (ALP) activity, calcium mineral deposition experiments, and real-time PCR analysis all exhibit that the superior proliferation rate and osteo-differentiation potential of MC3T3-E1 pre-osteoblasts are presented on the PEEK samples with dual functional decoration. In the mouse calvarial defect model, the micro-CT and histological results demonstrate that our scaffolds display a remarkable bone forming capability. Generally, the PEEK scaffolds co-endowed with simvastatin and tobramycin microspheres possess great potential in clinics.
Collapse
Affiliation(s)
- Lijun Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianhua He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kenan Xie
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lu Xie
- State Key Laboratory of Oral Diseases West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
13
|
Badv M, Imani SM, Weitz JI, Didar TF. Lubricant-Infused Surfaces with Built-In Functional Biomolecules Exhibit Simultaneous Repellency and Tunable Cell Adhesion. ACS NANO 2018; 12:10890-10902. [PMID: 30352507 DOI: 10.1021/acsnano.8b03938] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lubricant-infused omniphobic surfaces have exhibited outstanding effectiveness in inhibiting nonspecific adhesion and attenuating superimposed clot formation compared with other coated surfaces. However, such surfaces blindly thwart adhesion, which is troublesome for applications that rely on targeted adhesion. Here we introduce a new class of lubricant-infused surfaces that offer tunable bioactivity together with omniphobic properties by integrating biofunctional domains into the lubricant-infused layer. These novel surfaces promote targeted binding of desired species while simultaneously preventing nonspecific adhesion. To develop these surfaces, mixed self-assembled monolayers (SAMs) of aminosilanes and fluorosilanes were generated. Aminosilanes were utilized as coupling molecules for immobilizing capture ligands, and nonspecific adhesion of cells and proteins was prevented by infiltrating the fluorosilane molecules with a thin layer of a biocompatible fluorocarbon-based lubricant, thus generating biofunctional lubricant-infused surfaces. This method yields surfaces that (a) exhibit highly tunable binding of anti-CD34 and anti-CD144 antibodies and adhesion of endothelial cells, while repelling nonspecific adhesion of undesirable proteins and cells not only in buffer but also in human plasma or human whole blood, and (b) attenuate blood clot formation. Therefore, this straightforward and simple method creates biofunctional, nonsticky surfaces that can be used to optimize the performance of devices such as biomedical implants, extracorporeal circuits, and biosensors.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Sara M Imani
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Thrombosis & Atherosclerosis Research Institute (TaARI) , Hamilton , Ontario L8S 4L7 , Canada
| | - Tohid F Didar
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Department of Mechanical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Institute for Infectious Disease Research (IIDR) , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| |
Collapse
|
14
|
Wang Z, Yao J, Li Z, Yang K, Guo J, Zhang S, Sherazi TA, Li S. Bio-inspired fabrication of asymmetric wettability Janus porous membrane for secure F-oil infused F-free-membrane filtration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Zhan K, Hou X. Tunable Microscale Porous Systems with Dynamic Liquid Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703283. [PMID: 29388386 DOI: 10.1002/smll.201703283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Indexed: 05/11/2023]
Abstract
Solid microscale porous material systems have attracted more attention in recent years due to their various potential applications, such as energy source transportations, biomedical devices, wastewater treatments, phase separations, etc. However, such systems are still plagued with many issues including fouling, mechanical fragility, inability to self-heal, and low recyclability that restrict them for further industrial applications. Dynamic liquid-based microscale porous material systems, especially porous surfaces and membranes, provide a new opportunity for resolving these issues and possess many benefits, such as antifouling, slippery, transparent, recovery, self-healing, and recycling properties. This Concept is mainly concerned with how to obtain tunable microscale porous systems with dynamic liquid interfaces, and their applications from the surfaces to membranes. The authors hope this concept will attract interest of scientists in areas related to the rapid development and application of various liquid-based porous systems.
Collapse
Affiliation(s)
- Kan Zhan
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|