1
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
2
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Nagarjuna C, Ramakanth I. Solvent selective gelation of cetyltrimethylammonium bromide: structure, phase evolution and thermal characteristics. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231487. [PMID: 38577219 PMCID: PMC10987984 DOI: 10.1098/rsos.231487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
We report herein the gelation behaviour of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in a variety of solvent compositions. A turbid gel of CTAB in a binary solvent mixture at a critical composition was observed to be 1 : 3 v/v toluene : water. The molecular structure of the as-formed gel was investigated by X-ray diffraction and microscopic techniques, namely, optical and polarizing microscopy, scanning electron microscopy and small-angle X-ray scattering (SAXS). The phase evolution has been studied using UV-visible transmittance measurements and the thermal characteristics of the gel by differential scanning calorimetry measurements. SAXS studies, in conjunction with molecular modelling, revealed the gel to assemble as lamellae with high interdigitation of bilayer assembly of CTAB molecules with predominant non-covalent interactions, where the gel lamellae were inferred from the interplanar spacings. Rheological studies revealed the viscoelastic nature of the CTAB gels. The ability to form a gel has been evaluated in several polar solvents, such as methanol and chloroform, and non-polar solvents, such as toluene and carbon tetrachloride.
Collapse
Affiliation(s)
- Chapireddy Nagarjuna
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh522 241, India
| | - Illa Ramakanth
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh522 241, India
| |
Collapse
|
4
|
Hill MJS, Adams DJ. Multi-layer 3D printed dipeptide-based low molecular weight gels. SOFT MATTER 2022; 18:5960-5965. [PMID: 35916473 DOI: 10.1039/d2sm00663d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe the direct 3D printing of dipeptide hydrogels, forming layers from gels prepared from different dipeptides. The dipeptides self-assemble into fibres that lead to very different microstructures letting us differentiate between the gels. We show how the mechanical properties of the overall 3D printed structures are affected by the composition of each of the layers, allowing us to build up structures with different microstructure and stiffness. We also discuss the interface between layers formed from different gelators, showing that the gels remain independent from neighbouring printed material, even when prepared in very close proximity.
Collapse
Affiliation(s)
- Max J S Hill
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, Fang L. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Single subcutaneous injection of the minocycline nanocomposite-loaded thermosensitive hydrogel for the effective attenuation of experimental autoimmune uveitis. Int J Pharm 2022; 622:121836. [PMID: 35597394 DOI: 10.1016/j.ijpharm.2022.121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
Autoimmune uveitis induces a serious pathological and inflammatory response in the retina/choroid and results in vision impairment and blindness. Here, we report a minocycline (Mino) nanocomposite-loaded hydrogel offering a high drug payload and sustained drug release for the effective control of ocular inflammation via a single subcutaneous injection. In the presence of divalent cations (i.e., Ca2+), Mino was found to co-assemble with a phosphorylated peptide (i.e., NapGFFpY) via electrostatic interaction and consequently generating Mino nanocomposite. The drug entrapment efficiency (EE) of the Mino nanocomposite varied from 29.93±0.76% to 67.90±6.57%, depending on different component concentrations. After incorporation into 30 wt% poly (D,L-lactide)-b-poly (ethylene glycol)-b-poly (D,L-lactide) (PDLLA-PEG-PDLLA) thermosensitive hydrogel, the resulting Mino nanocomposite-loaded hydrogel provided a sustained drug release over 21 days. In the experimental autoimmune uveitis (EAU) rat model, a single subcutaneous injection of the Mino nanocomposite-loaded hydrogel effectively alleviated ocular inflammation in a dose-dependent manner. As indicated by optical coherence tomography (OCT) and electroretinogram (ERG) measurements, the Mino nanocomposite-loaded hydrogel treatment not only remarkably reduced destruction of the retina by EAU, but also greatly rescued retinal functions. Moreover, the proposed Mino nanocomposite-loaded hydrogel exerted its therapeutic effect on EAU primarily through a significant reduction of the influx of leukocytes and Th17 cells as well as suppression of microglia activation and apoptosis in the retina. Overall, the proposed Mino nanocomposite-loaded hydrogel might be a promising strategy for the clinical management of EAU.
Collapse
|
7
|
Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol 2022; 18:939-956. [PMID: 35854464 DOI: 10.1166/jbn.2022.3315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the rapid development of nanotechnology, carrier-based nano-drug delivery systems (DDSs) have been widely studied due to their advantages in optimizing pharmacokinetic and distribution profiles. However, despite those merits, some carrier-related limitations, such as low drug-loading capacity, systematic toxicity and unclear metabolism, usually prevent their further clinical transformation. Carrier-free nanomedicines with non-therapeutic excipients, are considered as an excellent paradigm to overcome these obstacles, owing to their superiority in improving both drug delivery efficacy and safety concern. In recent years, carrier-free nanomedicines have opened new horizons for cancer immunotherapy, and have already made outstanding progress. Herein, in this review, we are focusing on making an integrated and exhaustive overview of lately reports about them. Firstly, the major synthetic strategies of carrier-free nanomedicines are introduced, such as nanocrystals, prodrug-, amphiphilic drug-drug conjugates (ADDCs)-, polymer-drug conjugates-, and peptide-drug conjugates (PepDCs)-assembled nanomedicines. Afterwards, the typical applications of carrier-free nanomedicines in cancer immunotherapy are well-discussed, including cancer vaccines, cytokine therapy, enhancing T-cell checkpoint inhibition, as well as modulating tumor microenvironment (TME). After that, both the advantages and the potential challenges, as well as the future prospects of carrier-free nanomedicines in cancer immunotherapy, were discussed. And we believe that it would be of great potential practiced and reference value to the relative fields.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Hu Y, Wang Y, Deng J, Ding X, Lin D, Shi H, Chen L, Lin D, Wang Y, Vakal S, Wang J, Li X. Enzyme-instructed self-assembly of peptide-drug conjugates in tear fluids for ocular drug delivery. J Control Release 2022; 344:261-271. [DOI: 10.1016/j.jconrel.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/23/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
|
9
|
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112212. [PMID: 34225864 DOI: 10.1016/j.msec.2021.112212] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of people worldwide are affected by eye diseases, eventually leading to visual impairment or complete blindness. Conventional treatment involves the use of eye drops. However, these formulations often confer low ocular bioavailability and frequent dosing is required. Therefore, there is an urgent need to develop more effective drug delivery systems to tackle the current limitations. Hydrogels are multifunctional ophthalmic drug delivery systems capable of extending drug residence time and sustaining release of drugs. In this review, common ocular diseases and corresponding therapeutic drugs are briefly introduced. In addition, various types of hydrogels reported for ophthalmic drug delivery, including in-situ gelling hydrogels, contact lenses, low molecular weight supramolecular hydrogels, cyclodextrin/poly (ethylene glycol)-based supramolecular hydrogels and hydrogel-forming microneedles, are summarized. Besides, marketed hydrogel-based opthalmic formulations and clinical trials are also highlighted. Finally, critical considerations regarding clinical translation of biologics-loaded hydrogels are discussed.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
10
|
Guo Z, Shi L, Feng H, Yang F, Li Z, Zhang J, Jin L, Li J. Reduction-sensitive nanomicelles: Delivery celastrol for retinoblastoma cells effective apoptosis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Priyanka, Kumar A. Smart soft supramolecular hybrid hydrogels modulated by Zn 2+/Ag NPs with unique multifunctional properties and applications. Dalton Trans 2020; 49:15095-15108. [PMID: 33107505 DOI: 10.1039/d0dt01886d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of low molecular weight molecule-mediated biocompatible soft supramolecular hydrogels, considered to be next-generation materials for biomedical applications, is a challenging task. In this context, the present work reports the synthesis of the hybrid hydrogel (CISZ2H) comprising ternary nanohybrids (Zn2+-Ag NPs@β-FeOOH@5'-CMP), consisting of greener components as a building block with hydrophobic tail (containing Zn2+ ions, Ag NPs, and β-FeOOH) and hydrophilic head (5'-cytidine monophosphate (5'-CMP)). The presence of Zn2+ ions and Ag NPs in the nanohybrids introduces new coordination sites and induces the puckering of the ribose sugar in 5'-CMP to generate the solid-like network in the self-assembly via micellar formation involving building blocks. Extensive cross-linking among organic and inorganic moieties provide these hydrogels with unique physicochemical features of improved mechanical strength (∼71 000 Pa), large water retention capability (600%), self-healing, and injectability as arrived at by thixotropic measurements, low toxicity, and enhanced drug/dye loading capabilities. Thus, the co-doped Zn2+ ions and Ag NPs in CISZ2H impart it with enhanced mechanical stability, shear thinning, external stimuli-responsiveness (pH and temperature), sustained slow drug release, surface enhanced Raman scattering (SERS) activity, and antibacterial features, thereby making this hydrogel safer for drug delivery, wound healing, sensing, and tissue engineering. The excellent features of the as-synthesized hydrogels make it a smart soft material for advanced applications with enormous future potential.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| |
Collapse
|
12
|
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:911-927. [PMID: 32123302 PMCID: PMC7468530 DOI: 10.1038/s41401-020-0372-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems, including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yan-Peng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jin-Rong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Liu H, Yu A, Dai M, Lin D, Lin D, Xu X, Li X, Wang Y. Effects of Terminal Motif on the Self-Assembly of Dexamethasone Derivatives. Front Chem 2020; 8:9. [PMID: 32154209 PMCID: PMC7044695 DOI: 10.3389/fchem.2020.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Tailoring the terminal motif of molecules including drugs might significantly affect their self-assembly tendency in aqueous solution, thus providing a rational strategy to modulate its macroscopic characteristics of supramolecular assembly. A model drug of dexamethasone (Dex) was esterified by different fatty acids [succinic acid (SA), glutaric acid (GA), and adipic acid (AA)] and aromatic acid [phthalic acid (PA)] to generate a series of Dex derivatives. Aqueous solution of Dex-SA, Dex-GA, and Dex-AA turned into hydrogel spontaneously after a period time of incubation (24, 48, and 72 h, respectively) via the auto-hydrolytic strategy, while aqueous solution of Dex-PA did not result in hydrogelation during 3 days of incubation. Aqueous solutions of Dex-SA, Dex-GA, and Dex-AA underwent apparent hydrolysis (10.73 ± 0.64%, 15.17 ± 2.24%, and 17.29 ± 1.39%, respectively), while Dex-PA exhibited a minimal hydrolysis (<1%) in a period of 28 days study, as indicated by in vitro hydrolytic test. Morphological observation showed that the hydrogel formed by Dex-SA was composed of uniform nanofibers, while hydrogels formed by Dex-GA, and Dex-AA were derived from irregular particles. The mechanical strength of hydrogel formed by Dex-SA was much bigger than that of hydrogels formed by Dex-GA and Dex-AA, as indicated by rheological test. Moreover, the acylation of Dex did not compromise its potent anti-inflammatory activity in a lipopolysaccharide (LPS)-activated RAW 264.7 macrophage.
Collapse
Affiliation(s)
- Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ailing Yu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Deqing Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xu Xu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Cheng X, Jiang J, Liang G. Covalently Conjugated Hydrogelators for Imaging and Therapeutic Applications. Bioconjug Chem 2020; 31:448-461. [DOI: 10.1021/acs.bioconjchem.9b00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Jiaoming Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| |
Collapse
|
15
|
Cui Y, Zhang R, Yang L, Lv S. Self-carried AIE nanoparticles for in vitro non-invasive long-term imaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Gao W, Hu Y, Xu L, Liu M, Wu H, He B. Dual pH and glucose sensitive gel gated mesoporous silica nanoparticles for drug delivery. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
|
18
|
Wu D, Xie X, Kadi AA, Zhang Y. Photosensitive peptide hydrogels as smart materials for applications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Montheil T, Echalier C, Martinez J, Subra G, Mehdi A. Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J Mater Chem B 2018; 6:3434-3448. [DOI: 10.1039/c8tb00456k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sol–gel process is one of the main techniques leading to hybrid hydrogels that can be used in a wide scope of applications, especially in the biomedical field.
Collapse
Affiliation(s)
- Titouan Montheil
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Cécile Echalier
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Ahmad Mehdi
- Institut Charles Gerhardt Université de Montpellier
- CNRS
- ENSCM
- Montpellier
- France
| |
Collapse
|
20
|
Nolan MC, Fuentes Caparrós AM, Dietrich B, Barrow M, Cross ER, Bleuel M, King SM, Adams DJ. Optimising low molecular weight hydrogels for automated 3D printing. SOFT MATTER 2017; 13:8426-8432. [PMID: 29083003 DOI: 10.1039/c7sm01694h] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogels prepared from low molecular weight gelators (LMWGs) are formed as a result of hierarchical intermolecular interactions between gelators to form fibres, and then further interactions between the self-assembled fibres via physical entanglements, as well as potential branching points. These interactions can allow hydrogels to recover quickly after a high shear rate has been applied. There are currently limited design rules describing which types of morphology or rheological properties are required for a LMWG hydrogel to be used as an effective, printable gel. By preparing hydrogels with different types of fibrous network structures, we have been able to understand in more detail the morphological type which gives rise to a 3D-printable hydrogel using a range of techniques, including rheology, small angle scattering and microscopy.
Collapse
Affiliation(s)
- Michael C Nolan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|