1
|
Si Y, Wang D, Han Y, Sun C, Xu L, Chen M. Modulating Fe sites by La in porous MnFe 2O 4 for enhanced removal of ROX: Synergy of efficient adsorption and PMS activation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136600. [PMID: 39603118 DOI: 10.1016/j.jhazmat.2024.136600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Catalytic-adsorption method is a promising strategy for degrading organoarsenic compounds and removing secondary inorganic arsenic. The method relies significantly on heterogeneous catalysts with selectively adsorption and enhanced peroxymonosulfate (PMS) activation capacity. In this study, active sites for selective adsorption and PMS activations were developed by modulating the Fe-sites in porous MnFe2O4 through La-doping. Synchrotron radiation, EPR, and XPS characterizations confirmed the presence of oxygen vacancies, metal hydroxyl groups M(Fe/Mn/La)-(OH) and the active Fe(II)/Mn(II,III), as well as the fine structure of La occupied sites. Theoretical calculations indicate that the generation of Vo would increase the local electron cloud density of La dopants, leading to the transfer of local electrons into the bulk phase. The electron transfer characteristics result in the raising the d-band center of MnFe2O4 and lowering the Gibbs free energy of the intermediate state, thus promoting 1O2 generation. In 3% La-MnFe2O4/PMS system, 96% ROX (10 mg/L) were removed within 35 min with the secondary inorganic arsenic levels below 10 μg/L. The rate coefficients k for ROX removal in porous 3%La-MnFe2O4/PMS is 4.05 times higher than that in MnFe2O4/PMS. ROX was effectively removed in different water matrices (Liao River, Hun River, and groundwater), demonstrating the practical application potential of 3%La-MnFe2O4/PMS system. Under continuous flow conditions, the average of 97.9% and 87.3% of ROX were removed from ultrapure water and groundwater, respectively, over a 10-hour continuous run. This study highlights the high-performance spinel La-MnFe2O4 for the synergistic enhancement of PMS activation, secondary arsenic adsorption, and improved mass transfer, contributing to green and safe water treatment strategies.
Collapse
Affiliation(s)
- Yukun Si
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Dandan Wang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yuying Han
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Congting Sun
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mengfan Chen
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Kumar M, Mukherjee S, Thakur AK, Raval N, An AK, Gikas P. Aminoalkyl-organo-silane treated sand for the adsorptive removal of arsenic from the groundwater: Immobilizing the mobilized geogenic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127916. [PMID: 34986561 DOI: 10.1016/j.jhazmat.2021.127916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As), a geogenic legacy pollutant can be present in environmental matrices (water, soil, plants, or animal) in two redox states (As(III) or As(V)). In the present study, charged mono- and di-amino functionalized triethoxy and methoxyorganosilane (TT1 and TT2- 1% and 5%) were impregnated with quartz sand particles for the treatment of As polluted water. Spectroscopic characterization of organosilane treated sand (STS) indicated the co-existence of minerals (Mg, Mn, Ti), amide, and amidoalkyl groups, which implies the suitability of silanized materials as a metal(loids) immobilization agent from water. Changes in peaks were observed after As sorption in Fourier thermal infrared and EDS images indicating the involvement of chemisorption. Batch sorption studies were performed with the optimized experimental parameters, where an increased removal (>20% for TT2-1% and >60% for TT1-1%) of As was observed with sorbate concentration (50 µg L-1), temp. (25 ± 2 ºC) and sorbent dosages (of 10 g L-1) at 120 min contact time. Among the different adsorbent dosages, 10 g L-1 of both TT1 and TT2 was selected as an optimum dosage (maximum adsorption capacity ≈ 2.91 μg g-1). The sorption model parameters suggested the possibility of chemisorption, charge/ion-dipole interaction for the removal of arsenate.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttrakhand, 248007, India; Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Alok Kumar Thakur
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Nirav Raval
- Encore Insoltech Pvt Ltd, Gift City Road, Randesan, Gandhinagar, 382007, India; Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat, 370001, India
| | | | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University at Crete, Chania 73100, Greece
| |
Collapse
|
3
|
Ma S, Jiang W, Hu Y, Wang Q, Wu W, Shi B. Synthesis, Crystal Structure, and Insecticidal Activity of Steroidal N-Piperidone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1467-1476. [PMID: 35080386 DOI: 10.1021/acs.jafc.1c06075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of steroidal piperidone derivatives were synthesized, and their agricultural activities were evaluated against Myzus persicae, Aphis citricola, Brevicoryne brassicae Linn., and Bemisia tabaci (Gennadius). Most of the tested compounds exhibited potent insecticidal activity against these four pests. Compound I-9 displayed the highest activity against M. persicae, A. citricola, and Brevicoryne brassicae, with LC50 values of 11.3, 10.4, and 8.68 μg/mL, respectively. The mode of action test indicated that these derivatives had superior contact and systemic insecticidal activity against M. persicae. In addition, we initially explored whether the foregut and midgut might be the action sites of the target derivatives against M. persicae. Furthermore, a field trial showed that the control of compound I-9 was similar to that of acetamiprid against M. persicae, at a dose of 50 μg/mL; the control rates were 97.8 and 99.2% after 14 and 21 days, respectively. The structure-activity relationship of these analogues provided some important insights for the discovery and development of new insecticides to solve the current pesticide resistance crisis.
Collapse
Affiliation(s)
- Shichuang Ma
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
| | - Weiqi Jiang
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
| | - Yuxiao Hu
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
| | - Qiangping Wang
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, No. 3 Tai Cheng Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Chen JQ, Zheng QQ, Xiao SJ, Zhang L, Liang RP, Ouyang G, Qiu JD. Construction of Two-Dimensional Fluorescent Covalent Organic Framework Nanosheets for the Detection and Removal of Nitrophenols. Anal Chem 2022; 94:2517-2526. [DOI: 10.1021/acs.analchem.1c04406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jia-Qing Chen
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiong-Qing Zheng
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Li Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Ma S, Jiang W, Li Q, Li T, Wu W, Bai H, Shi B. Design, Synthesis, and Study of the Insecticidal Activity of Novel Steroidal 1,3,4-Oxadiazoles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11572-11581. [PMID: 34554742 DOI: 10.1021/acs.jafc.1c00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of novel steroidal derivatives with a substituted 1,3,4-oxadiazole structure was designed and synthesized, and the target compounds were evaluated for their insecticidal activity against five aphid species. Most of the tested compounds exhibited potent insecticidal activity against Eriosoma lanigerum (Hausmann), Myzus persicae, and Aphis citricola. Compounds 20g and 24g displayed the highest activity against E. lanigerum, showing LC50 values of 27.6 and 30.4 μg/mL, respectively. Ultrastructural changes in the midgut cells of E. lanigerum were detected by transmission electron microscopy, indicating that these steroidal oxazole derivatives might exert their insecticidal activity by destroying the mitochondria and nuclear membranes in insect midgut cells. Furthermore, a field trial showed that compound 20g exhibited effects similar to those of the positive controls chlorpyrifos and thiamethoxam against E. lanigerum, reaching a control rate of 89.5% at a dose of 200 μg/mL after 21 days. We also investigated the hydrolysis and metabolism of the target compounds in E. lanigerum by assaying the activities of three insecticide-detoxifying enzymes. Compound 20g at 50 μg/mL exhibited inhibitory action on carboxylesterase similar to the known inhibitor triphenyl phosphate. The above results demonstrate the potential of these steroidal oxazole derivatives to be developed as novel pesticides.
Collapse
Affiliation(s)
- Shichuang Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiqi Jiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hangyu Bai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Preparation of silicon-doped ferrihydrite for adsorption of lead and cadmium: Property and mechanism. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Huang Q, Zhang Y, Zhou W, Huang X, Chen Y, Tan X, Yu T. Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
9
|
Adsorption performance and mechanism of Schiff base functionalized polyamidoamine dendrimer/silica for aqueous Mn(II) and Co(II). CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Removal of arsenic from water using iron-doped phosphorene nanoadsorbents: A theoretical DFT study with solvent effects. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Synthesis of novel N-pyridylpyrazole derivatives containing 1,2,4-oxadiazole moiety via 1,3-dipolar cycloaddition and their structures and biological activities. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|