1
|
Xiong T, Li X, Ma Z, Liu K, Li Y, Li C, Luo F, Yang Z. Modulation in work function of CoTe as bifunctional electrocatalyst for rechargeable zinc air battery. J Colloid Interface Sci 2024; 672:170-178. [PMID: 38838626 DOI: 10.1016/j.jcis.2024.05.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The sluggish kinetics and inferior stability of oxygen electrocatalyst in rechargeable zinc air battery (ZAB) hamper its industrialization. In this work, we activate cobalt telluride (CoTe) by introduction of metallic cobalt (Co) to modulate the work function to facilitate the electron transfer from Co to CoTe during oxygen catalysis; additionally, the three-dimensional porous carbon nanosheets (3DPC) are invited to reduce the resistance towards electrolyte/oxygen diffusion. Thereby, Co-CoTe@3DPC only demands 280 mV overpotential to reach 10 mA cm-2 under alkaline oxygen evolution reaction (OER) condition, relatively lower than commercial iridium oxides (IrO2); besides, the operando electrochemical impedance spectroscopy (EIS) indicates a better resistance towards surface reconstruction than Co@3DPC leading to a superior stability. A Pt-like oxygen reduction reaction (ORR) performance, half-wave potential associated with kinetic current density, is achieved for Co-CoTe@3DPC. A maximum power density of 203 mW cm-2 is achieved and sustains for 800 h. Furthermore, the all-solid-state ZAB offers 97 mW cm-2. Theoretical calculation suggests that the incorporation of metallic Co to CoTe maintains the superb ORR activity and promotes the OER catalysis.
Collapse
Affiliation(s)
- Tiantian Xiong
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China; Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Xianwei Li
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhiyong Ma
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Kaiyi Liu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Yi Li
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Luo
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Zehui Yang
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| |
Collapse
|
2
|
Wang H, Han X, Zhang L, Wang K, Zhang R, Wang X, Song S, Zhang H. Integrating ceria with cobalt sulfide as high-performance electrocatalysts for overall water splitting. FUNDAMENTAL RESEARCH 2023; 3:356-361. [PMID: 38933759 PMCID: PMC11197577 DOI: 10.1016/j.fmre.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The development of bifunctional electrocatalysts for overall water splitting is highly desired for converting electricity into chemical energy. However, the synthesis of high-performance bifunctional electrocatalysts remains a pressing challenge. Here, we found that both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance of the Co3S4 electrode can be significantly improved by integration with CeO2. Specifically, as-prepared 5% Ce-Co3S4 and 1% Ce-Co3S4 delivered low overpotentials of 290 and 257 mV to achieve 10 mA cm-2 for the OER and HER in 1.0 M KOH, respectively. The crucial role of CeO2 originated from its unique surface with abundant oxygen vacancies, which were beneficial for the stabilization of Co2+ sites with high OER activity and both the adsorption and dissociation of water molecules in the HER process. This work is expected to provide a general approach to prepare a wide range of high-performance electrode materials for energy-related applications.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoxiao Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts 2023. [DOI: 10.3390/catal13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-based composites have generated great interest in the field of solar fuel conversion because of their cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In this review, we initially summarize the four common strategies for preparing cobalt sulfide-based composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction, nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to provide useful reference for the construction of high-performance cobalt sulfide-based composite photocatalytic materials for sustainable solar-chemical energy conversion.
Collapse
|
4
|
Application of metal sulfides in energy conversion and storage. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Lin L, Zhang Q, Ni Y, Shang L, Zhang X, Yan Z, Zhao Q, Chen J. Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Zheng J, Peng Y, Fan R, Chen J, Zhan Z, Yao D, Ming P. Study on carbon matrix composite bipolar plates with balance of conductivity and flexural strength. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
The modulated oxygen evolution reaction performance in La2/3Sr1/3CoO3 by a design of stoichiometry offset. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Application of metal sulfide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Velayudham P, P. V. S, Menon RS, Panda SK, Sahu AK. In-situ fabrication of cobalt sulfide decorated N, S co-doped mesoporous carbon and its application as electrocatalyst for efficient oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing an efficient electrocatalyst for facile oxygen reduction reaction (ORR) is essential to achieve higher fuel cell performance. Herein, we demonstrate the simple in-situ process to synthesize cobalt sulfide decorated...
Collapse
|
10
|
Double shelled hollow CoS 2@MoS 2@NiS 2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. J Colloid Interface Sci 2021; 610:653-662. [PMID: 34848059 DOI: 10.1016/j.jcis.2021.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022]
Abstract
Electrocatalysts play important role in various energy conversion and storage devices. The catalytic performance of electrocatalysts can be enhanced through the increasement of intrinsic catalytic activity by optimizing electronic structure and the improvement of exposed active sites by designing proper nanostructures. In this work, CoS2@MoS2@NiS2 nano polyhedron with double-shelled structure was prepared using metal organic framework as a precursor. Due to the rational integration of multifunctional active center, the strong electronic interaction of the various component, the high electrochemical surface area and shortened mass transport induced by the special structure, CoS2@MoS2@NiS2 exhibits high catalytic activity for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, low overpotentials of 156 and 200 mV was achieved to deliver a current density of 10 mA cm-2 for HER and OER, and a high half-wave potential of 0.80 V was observed for ORR. More importantly, the Zn-air battery assembled by CoS2@MoS2@NiS2 exhibits a high-power density of 80.28 mW cm-2 and could effectively drive overall water splitting. This work provides a new platform for designing multifunctional catalysts with high activity for energy conversion and storage.
Collapse
|
11
|
Zhang S, Chen M, Zhao X, Cai J, Yan W, Yen JC, Chen S, Yu Y, Zhang J. Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|