1
|
Zhu Q, Tian X, He G. Insertion of Glycosylidene Carbenes into Phenolic O-H Bonds for the Synthesis of O-Aryl Glycosides. J Org Chem 2025; 90:3087-3092. [PMID: 39965089 DOI: 10.1021/acs.joc.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We present a new strategy for the synthesis of O-aryl glycosides through the formal insertion of glycosylidene carbenes into the O-H bond of phenols. The key glycosylidene carbene intermediates were generated in situ by copper-catalyzed oxidation of bench-stable glycosylidene diaziridine precursors. This method enables the glycosylation of a variety of phenols with good yields, excellent diastereoselectivity, and chemoselectivity, providing a highly practical method for the late-stage glycosylation of complex natural products and bioactive agents.
Collapse
Affiliation(s)
- Qibin Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinyu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Liu M, Liu F, Xiao H, Wang PY, Liu M, Ye XS, Xiong DC. 1-(2'-Hydroxy-2'-Methylpropionyl)Glycoside as a Versatile Glycosyl Donor for O-/C-Glycosylation. Chemistry 2025; 31:e202403534. [PMID: 39508325 DOI: 10.1002/chem.202403534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Herein, we developed a Lewis acid-mediated O-glycosylation and C-glycosylation protocol using stable glycosyl 2'-hydroxy-2'-methylpropionates as donors. These glycosylation reactions reached completion within 1 h at room temperature. The practicality of this protocol is characterized by their straightforward operation and efficient applicability to various substrates, including both disarmed and armed glycosyl donors, through the remote activation of easily accessible TMSOTf.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hui Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
3
|
Khaleri M, Li Q. Stereoselective Conversions of Carbohydrate Anomeric Hydroxyl Group in Basic and Neutral Conditions. Molecules 2024; 30:120. [PMID: 39795176 PMCID: PMC11722021 DOI: 10.3390/molecules30010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
The rapidly growing glycoscience has boosted the research on the synthesis of glycans and their conjugates, which are centered on the stereoselective formation of glycosidic bonds. Compared to the mainstream acid-promoted glycosylation method that undergoes the SN1 type mechanism, the basic/neutral conditions give better stereo control via the SN2 mechanism. Anomeric hydroxyl group transformation, whether to form glycosidic bonds directly or to install a leaving group for later glycosylation, is key to carbohydrate synthesis, and the strategies in the stereo control of these reactions under basic/neutral conditions are summarized in this review. Different stereo control strategies that are applicable to protected or unprotected hemiacetals are discussed, and case-by-case studies of literature reports in the past two decades are included. In addition to surveying literature reports, this review aims at providing insights into the strategic considerations in the development of a stereoselective method for the formation of glycosidic bonds.
Collapse
Affiliation(s)
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA;
| |
Collapse
|
4
|
Hadj Mohamed A, Pinon A, Lagarde N, Goya Jorge E, Mouhsine H, Msaddek M, Liagre B, Sylla-Iyarreta Veitía M. Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules 2022; 13:54. [PMID: 36671439 PMCID: PMC9855432 DOI: 10.3390/biom13010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Distinctive structural, chemical, and physical properties make the diarylmethane scaffold an essential constituent of many active biomolecules nowadays used in pharmaceutical, agrochemical, and material sciences. In this work, 33 novel diarylmethane molecules aiming to target colorectal cancer were designed. Two series of functionalized olefinic and aryloxy diarylmethanes were synthesized and chemically characterized. The synthetic strategy of olefinic diarylmethanes involved a McMurry cross-coupling reaction as key step and the synthesis of aryloxy diarylmethanes included an O-arylation step. A preliminarily screening in human colorectal cancer cells (HT-29 and HCT116) and murine primary fibroblasts (L929) allowed the selection, for more detailed analyses, of the three best candidates (10a, 10b and 12a) based on their high inhibition of cancer cell proliferation and non-toxic effects on murine fibroblasts (<100 µM). The anticancer potential of these diarylmethane compounds was then assessed using apoptotic (phospho-p38) and anti-apoptotic (phospho-ERK, phospho-Akt) cell survival signaling pathways, by analyzing the DNA fragmentation capacity, and through the caspase-3 and PARP cleavage pro-apoptotic markers. Compound 12a (2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl) vinyl) pyridine, Z isomer) was found to be the most active molecule. The binding mode to five biological targets (i.e., AKT, ERK-1 and ERK-2, PARP, and caspase-3) was explored using molecular modeling, and AKT was identified as the most interesting target. Finally, compounds 10a, 10b and 12a were predicted to have appropriate drug-likeness and good Absorption, Distribution, Metabolism and Excretion (ADME) profiles.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Elizabeth Goya Jorge
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Av. de Cureghem 10 (B43b), 4000 Liège, Belgium
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Moncef Msaddek
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
5
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
6
|
Chi Y, Zhou H, He HW, Ma YD, Li B, Xu D, Gao JM, Xu G. Total Synthesis and Anti-Tobacco Mosaic Virus Activity of the Furofuran Lignan (±)-Phrymarolin II and Its Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2937-2944. [PMID: 34730370 DOI: 10.1021/acs.jnatprod.1c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.
Collapse
Affiliation(s)
- Yuan Chi
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Huan Zhou
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Hong-Wei He
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yi-Dan Ma
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Bo Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
9
|
Chen ZD, Chen Z, Wang QE, Si CM, Wei BG. Stereoselective approach to access 3-tert-Butyl-Dimethylsiloxy-2,6-Substituted piperidines through nucleophilic addition of N,O-acetals with organozinc reagents. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|