1
|
Zhao Z, Jin W, Wu M, Lin Q, Duan Y. A dual-labeling fluorescent probe to track lysosomal polarity and endoplasmic reticulum dynamics during ferroptosis. Chem Commun (Camb) 2024; 60:7773-7776. [PMID: 38976312 DOI: 10.1039/d4cc02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A polarity-sensitive probe was developed to simultaneously label lysosomes and endoplasmic reticulum (ER) via its dansylamide and rhodamine fluorescence, respectively, enabling ratiometric polarity detection and stable dual-labeling. The fragmented ER network and increased lysosomal polarity during ferroptosis were revealed, which facilitates the understanding of ferroptotic mechanisms.
Collapse
Affiliation(s)
- Zhao Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
2
|
Zhao W, Wang C, Zhu Y, Wang Q, Xu X, Shao Z, Chen M, Feng Y, Meng X. Visualized Tracking and Multidimensional Assessing of Mitochondria-Associated Pyroptosis in Cancer Cells by a Small-Molecule Fluorescent Probe. Anal Chem 2024; 96:6381-6389. [PMID: 38593059 DOI: 10.1021/acs.analchem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Pyroptosis is closely related to the development and treatment of various cancers; thus, comprehensive studies of the correlations between pyroptosis and its inductive or inhibitive factors can provide new ideas for the intervention and diagnosis of tumors. The dysfunction of mitochondria may induce pyroptosis in cancer cells, which can be reflected by the fluctuations of the microenvironmental parameters in mitochondria as well as the changes of mitochondrial DNA level and morphology, etc. To precisely track and assess the mitochondria-associated pyroptosis process, simultaneous visualization of changes in multiphysiological parameters in mitochondria is highly desirable. In this work, we reported a nonreaction-based, multifunctional small-molecule fluorescent probe Mito-DK with the capability of crosstalk-free response to polarity and mtDNA as well as mitochondrial morphology. Accurate assessment of mitochondria-associated pyroptosis induced by palmitic acid/H2O2 was achieved through monitoring changes in mitochondrial multiple parameters with the help of Mito-DK. In particular, the pyroptosis-inducing ability of an antibiotic doxorubicin and the pyroptosis-inhibiting capacity of an anticancer agent puerarin were evaluated by Mito-DK. These results provide new perspectives for visualizing mitochondria-associated pyroptosis and offer new approaches for screening pyroptosis-related anticancer agents.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chengyuan Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianyun Xu
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zonglong Shao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
3
|
Zuo Y, Zhang K, Gou Z, Yan M. Polarity responsive polysiloxanes with twisting intramolecular charge transfer effect for monitoring lipophagy process and the detection of volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133106. [PMID: 38056256 DOI: 10.1016/j.jhazmat.2023.133106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Polarity plays a critical role in biology and materials science, serving as a complex parameter. Imbalances in polarity within subcellular organelles are closely associated with various diseases. Moreover, volatile organic compounds (VOC) with low polarity pose significant health and safety risks, therefore, researchers have shown great interest in accurately detecting polarity. However, precise observation of polarity changes within organisms and identification of low-polarity volatile organic solvents are formidable challenges. To overcome these difficulties, we developed a versatile polymeric twisting intramolecular charge transfer (TICT) effect Polysiloxane-n (PDMS-n), utilizing polysiloxane molecular chains as "smart guides" to connect TICT molecules, inspired by the concept of "threading a needle." With the aid of PDMS-n, the process of polarity changes during cellular lipophagy was monitored in situ with high accuracy. Remarkably, the polarity changes of the local microstructure of the PDMS films were successfully visualized. PDMS-Films were also constructed, which enabled the recognition of Dichloromethane (DCM) gas during swelling. This work will contribute to the understanding of changes in cellular physiological processes, and facilitate the sensitive detection of VOCs.
Collapse
Affiliation(s)
- Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
4
|
Liu MX, Xu L, Zhu PF, Li X, Shan M, Jin W, Chen J, Ling Y, Zhang XL. Two-photon excited red-green "discoloration" bioprobes for monitoring lipid droplets and lipid droplet-lysosomal autophagy. J Mater Chem B 2023; 11:3186-3194. [PMID: 36946887 DOI: 10.1039/d2tb02621j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Lipid droplets (LDs) and their autophagy by lysosomes are closely related to a variety of physiological and pathological conditions. Therefore, identifying and tracking LDs and the dynamic process of autophagy can provide useful information for the diagnostics and treatment of related diseases. However, few organic small molecule-based fluorescent probes can specifically recognize LDs and dynamically track their autophagy process. Herein, we synthesized a "discoloration" fluorescent bioprobe DPABP-BI with distinguishable features including red fluorescence emission (630 nm), large Stokes shift (145 nm), two-photon excitation and outstanding photostability and biocompatibility. In particular, LDs could be specifically identified via the red fluorescence emission of DPABP-BI (colocalization constant of 0.98), while autophagolysosomes could be visualized via the green fluorescence emission of its acid-hydrolyzed product (colocalization constant of 0.90) to track the autophagy dynamic process. In addition, DPABP-BI enabled the specific recognition of fatty substances in zebrafish larvae. In this study, a two-photon excited red light small molecule probe was constructed to identify LDs and track their autophagy dynamic process by changing the fluorescence emission wavelength.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Peng-Fei Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xin Li
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Miao Shan
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Wei Jin
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Pan H, Chai X, Zhang J. A near-infrared fluorescent probe for fast and precise imaging of senescent cells and ovarian cancer cells via tracking β-galactosidase. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Li Z, Tan J, Gao C, Lu Z, You J, Zhu JJ. Polarity-Ultrasensitive and Lipophilicity-Enhanced Structurally Modified Hemicyanine for Two-Color Staining to Reveal Cell Apoptosis during Chemotherapy. Anal Chem 2023; 95:2011-2019. [PMID: 36629754 DOI: 10.1021/acs.analchem.2c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Programmed cell death (PCD) is a precisely controlled physiological process to sustain tissue homeostasis. Even though the PCD pathways have been explicitly subdivided, the individual cell death process seems to synergistically operate to eliminate cells rather than separately execute signal transduction. Apoptosis is the dominant intracellular PCD subtype, which is intimately regulated and controlled by mitochondria, thus tracing mitochondrial actions could reveal the dynamic changes of apoptosis, which may provide important tools for screening preclinical therapeutic agents. Herein, we exploited an innovative fluorophore Cy496 based on the light-initiated cleavage reaction. Cy496 bears the typical D-π-A structure and serves as a versatile building block for chemosensor construction through flexible side chains. By regulating lipophilicity and basicity through bis-site substitution, we synthesized a series of fluorescence probes and screened a novel mitochondria-targeted ratiometric probe Cy1321, which can real-time evaluate the dynamic changes of mitochondrial micropolarity mediated by bis-cholesterol anchoring. Cy1321 has realized two-color quantification and real-time visualization of polarity fluctuations on chemotherapy agent (cisplatin)-induced apoptosis through flow cytometry and confocal imaging and also achieved the purpose of detecting mitochondria-related apoptosis at the level of tissues. It is envisioned that Cy1321 has sufficient capability as a promising and facile tool for the evaluation of apoptosis and contributing to therapeutic drug screening.
Collapse
Affiliation(s)
- Zan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiangkun Tan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyu Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Coumarin-based two-photon AIE fluorophores: Photophysical properties and biological application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhai S, Hu W, Wang W, Chai L, An Q, Li C, Liu Z. Tracking autophagy process with a through bond energy transfer-based ratiometric two-photon viscosity probe. Biosens Bioelectron 2022; 213:114484. [PMID: 35724553 DOI: 10.1016/j.bios.2022.114484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Autophagy is a self-degradation process in cells, which is of vital significance to the health and operation of organisms. Due to the increase of lysosomal viscosity during autophagy, viscosity probes that specifically accumulate in lysosome are powerful tools for monitoring autophagy and investigating related diseases. However, there is still a lack of viscosity-sensitive ratiometric autophagy probes, which restricts the tracking of autophagy with high accuracy in complex physiological environment. Herein, a viscosity-responsive, lysosome targeted two-photon fluorescent probe Lyso-Vis was designed based on through bond energy transfer (TBET) mechanism. The TBET-based probe achieved the separation of two emission baselines, which greatly improved the resolution and reliability of sensing and imaging. Under 810 nm two-photon excitation, the emission intensity ratio of the red and green channel increased with a viscosity dependent manner. Lyso-Vis not only for the first time realized ratiometric sensing of lysosomal viscosity during autophagy process, but also visualized the association of autophagy with inflammation and stroke, and it was applied to explore the activation and inhibition of autophagy during stroke in mice.
Collapse
Affiliation(s)
- Shuyang Zhai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Weibo Wang
- Key Laboratory of Pesticide and Chemical Biology College of Chemistry, Ministry of Education Central China Normal University, Wuhan, 430079, China
| | - Li Chai
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Qian An
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China.
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
10
|
Wu X, Lu Y, Liu B, Chen Y, Zhang J, Zhou Y. A H2S-triggered two-photon ratiometric fluorescent theranostic prodrug for bio-imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Wang X, Chen Q, Dong K, Sun C, Huang Y, Qiang Z, Chen B, Chen M, Feng Y, Meng X. Accurate Monitoring and Multiple Evaluations of Mitophagy by a Versatile Two-Photon Fluorescent Probe. Anal Chem 2021; 93:9200-9208. [PMID: 34152733 DOI: 10.1021/acs.analchem.1c01365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitophagy plays a critical role in regulating and maintaining cellular functions, particularly regulating the quantity and quality of mitochondria. In this research, a multifunctional two-photon fluorescent probe Mito-PV with improved mitochondria-anchored ability was designed. The proposed probe can track the fluctuation of polarity and viscosity in mitochondria simultaneously with two well-distinguished emissions. It can also precisely visualize the change in mitochondrial morphology (including mitochondrial form factor and length). The real-time and accurate monitoring of mitophagy under two-photon excitation was successfully achieved by utilizing probe Mito-PV through supervising the alterations of diverse mitophagy-related parameters (including colocalization coefficient, polarity, viscosity, and mitochondrial morphology). In addition, probe Mito-PV can be applied to evaluate drug bpV(phen) as an effective mitophagy inhibitor. Therefore, our work may provide a more efficient and reliable method for precisely monitoring mitophagy from multiple evaluations.
Collapse
Affiliation(s)
- Xinru Wang
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Qi Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University & Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, P. R. China
| | - Kun Dong
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Chuan Sun
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Yinliang Huang
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Zeming Qiang
- Anhui Golden Sun Biochemical Pharmaceuticals Limited Company, Fuyang 236000, P. R. China
| | - Baoqian Chen
- Anhui Golden Sun Biochemical Pharmaceuticals Limited Company, Fuyang 236000, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
12
|
Yuan Z, Chen J, Zhou Q, Liu A, Qiang Z, Fang M, Chen M, Feng Y, Yu H, Yang X, Meng X. A lysosomal polarity-specific two-photon fluorescent probe for visualization of autophagy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Li X, Liang X, Yin J, Lin W. Organic fluorescent probes for monitoring autophagy in living cells. Chem Soc Rev 2020; 50:102-119. [PMID: 33155002 DOI: 10.1039/d0cs00896f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a ubiquitous degradation process in cells, autophagy plays important roles in various biological activities. However, the abnormality of autophagy is closely related to many diseases, such as aging, neurological disorder, and cancer. Thus, monitoring the process of autophagy in living cells has high significance in biological studies and diagnosis of related diseases. In order to real-time and in situ monitor the process of autophagy, various organic fluorescent probes have been explored in recent years owing to the advantages such as handy staining processes, flexible molecular design strategies, and near-nondestructive detection. However, this interesting and frontier topic has not been reviewed so far. In this tutorial review, we will focus on the latest breakthrough results of organic fluorescent probes in monitoring autophagy of living cells, especially the probe design strategies based on the several microenvironment changes of the autophagy process, and the responding mechanisms and bio-imaging applications in the autophagy process. In addition, we will discuss the shortcomings and limitations of the probes developed, such as susceptible to interference, unable to monitor the whole process, and lack of clinical applications. Finally, we will highlight some challenges and further opportunities in this field. This tutorial review may promote the development of more robust fluorescent probes to further reveal the mechanisms of autophagy, which is the basis of degradation and recycling of cell components.
Collapse
Affiliation(s)
- Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | | | | | | |
Collapse
|
14
|
Xiao H, Zhang T, Dong Y, Song X, Xing L, Zhou J, Liu Y, Zhuo S. The photophysical properties and imaging application of a new polarity-sensitive fluorescent probe. Analyst 2020; 145:6556-6561. [DOI: 10.1039/d0an01064b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We develop a new polarity-sensitive fluorescent probe that displays weak fluorescence in low-polarity solvents and intense fluorescence in high-polarity solvents.
Collapse
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
- College of Chemistry
| | - Tian Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yaqi Dong
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xiaojuan Song
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|