1
|
Liu Y, Abuduheni A, Yang F, Hu H, Liu Z. Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole-Iron Thiocyanate Complex. Int J Mol Sci 2024; 25:9064. [PMID: 39201750 PMCID: PMC11354588 DOI: 10.3390/ijms25169064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
By introducing disordered molecules into a crystal structure, the motion of the disordered molecules easily induces the formation of multidimensional frameworks in functional crystal materials, allowing for structural phase transitions and the realization of various dielectric properties within a certain temperature range. Here, we prepared a novel ionic complex [C7H8N3]3[Fe(NCS)6]·H2O (1) between 2-aminobenzimidazole and ferric isothiocyanate from ferric chloride hexahydrate, ammonium thiocyanate, and 2-aminobenzimidazole using the evaporation of the solvent method. The main components, the single-crystal structure, and the thermal and dielectric properties of the complex were characterized using infrared spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder XRD, thermogravimetric analysis, differential scanning calorimetry, variable-temperature and variable-frequency dielectric constant tests, etc. The analysis results indicated that compound 1 belongs to the P21/n space group. Within the crystal structure, the [Fe(NCS)6]3- anion formed a two-dimensional hydrogen-bonded network with the organic cation through S···S interactions and hydrogen bonding. The disorder-order motion of the anions and cations within the crystal and the deformation of the crystal frameworks lead to a significant reversible isostructural phase transition and multiaxial dielectric anomalies of compound 1 at approximately 240 K.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (A.A.); (F.Y.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Adila Abuduheni
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (A.A.); (F.Y.); (H.H.)
| | - Fang Yang
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (A.A.); (F.Y.); (H.H.)
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (A.A.); (F.Y.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (A.A.); (F.Y.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
2
|
Chen J, Zhang X, Cai Z, Zhang Y, Song Q, Hua XN, Sun B. Intermolecular Forces Regulating the Phase-Transition Temperatures in Organic-Inorganic Hybrid Materials. Inorg Chem 2024; 63:7770-7779. [PMID: 38608286 DOI: 10.1021/acs.inorgchem.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.
Collapse
Affiliation(s)
- Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiang Zhang
- Jiangyan High School of Jiangsu Province, Taizhou 225599, P. R. China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qi Song
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
3
|
Guo W, Yang Z, Li B, Zhang H, Cai H, Wei Z. Alkali Metal Organic-Inorganic Hybrid Compounds with Different Crystal Dimensions Show Phase-Transition, Dielectric, and SHG Properties Based on a Quasi-Spherical Amine (1 S,4 S)-2,5-Diazabicyclo[2.2.1]heptane. Inorg Chem 2024; 63:1337-1346. [PMID: 38153815 DOI: 10.1021/acs.inorgchem.3c03732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Reactions of a chiral and quasi-spherical molecule [1S,4S-2,5-2.2.1-H2dabch]I2 (1) with alkali metal halide MX (M = Na, K, Cs; X = Cl, Br) at room temperature produced a series of organic-inorganic hybrid (OIH) materials [1S,4S-2,5-2.2.1-H2dabch]NaBr3 (2), [1S,4S-2,5-2.2.1-H2dabch]CsCl3·H2O (3) and [1S,4S-2,5-2.2.1-H2dabch]KBr3·H2O (4). The single-crystal X-ray diffraction analysis revealed that the organic-inorganic framework structures comprised of the templating ligand and alkali metal halides (NaBr, CsCl, KBr) displayed dimensions spanning from one-dimensional (1D) to three-dimensional (3D). Moreover, the results of both differential scanning calorimetry (DSC) and dielectric measurements demonstrated that compounds 1-4 displayed reversible, high-temperature phase transitions and noticeable dielectric anomalies. In addition, the temperature-dependent second harmonic generation (SHG) results revealed crystals 1 and 3 can switch from the SHG-ON to the SHG-OFF state, which was proved by the variable-temperature X-ray diffraction. This research aims to streamline the exploration of multifunctional second harmonic generation (SHG) and dielectric materials that have been synthesized using chiral ligands and alkali metals. This will provide researchers with enhanced opportunities to delve further into this specific research domain.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Zhao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| |
Collapse
|
4
|
Yu B, Han W, Liu G, Wei Y, Wei J, Zheng Y, Dang Y. Oxidation-Induced Dissolution Recrystallization Structural Transformation Strategy Enhanced Nonlinear Optical Effect of Hybrid Chiral Tin Bromide Single Crystals. Inorg Chem 2023. [PMID: 38033304 DOI: 10.1021/acs.inorgchem.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In order to reveal the integrated effect of inorganic lattice structure disturbances and chiral ligands on the structure of tin halide hybrid materials, we show the synthesis, crystal growth, dissolution recrystallization structural transformation (DRST), optical properties, energy band structure, and nonlinear optical properties of a class of chiral tin bromide R/S-2-mpip[SnBr3]Br (2-mpip is 2-methylpiperazinium) and R/S-2-mpipSnBr6 for the first time. The formation of R/S-2-mpipSnBr6 in solution was interestingly caused by irreversible DRST of R/S-2-mpip[SnBr3]Br. The second-harmonic generation response of the new phase R-2-mpipSnBr6 is significantly enhanced compared to that of the initial phase R-2-mpip[SnBr3]Br. These structural transformations of chiral tin bromides reflect, to some extent, the DRST commonality of the tin halide family induced by oxidation and serve as a starting point for investigating the structural chirality and asymmetry of chiral metal hybrid halides.
Collapse
Affiliation(s)
- Binyin Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
5
|
Wu T, Huang S, Feng X, Liu X, James TD, Sun X, Qian X. Visualizing Drug Release from a Stimuli-Responsive Soft Material Based on Amine-Thiol Displacement. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22967-22976. [PMID: 37145981 DOI: 10.1021/acsami.3c02720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this research, we developed a photoluminescent platform using amine-coupled fluorophores, generated from a single conjugate acceptor containing bis-vinylogous thioesters. Based on the experimental and computational results, the fluorescence turn-on mechanism was proposed to be charge separated induced energy radiative transition for the amine-coupled fluorophore, while the sulfur-containing precursor was not fluorescent since the energy internal conversion occurred through vibrational 2RS- (R represents alkyl groups) as energy acceptor(s). Further utilizing the conjugate acceptor, we establish a new fluorogenic approach via a highly cross-linked soft material to selectively detect cysteine under neutral aqueous conditions. Turn-on fluorescence emission and macroscopic degradation occurred in the presence of cysteine as the stimuli, which can be visually tracked due to the generation of an optical indicator and the cleavage of linkers within the matrix. Furthermore, a novel drug delivery system was constructed, achieving controlled release of sulfhydryl drug (6-mercaptopurine) which was tracked by photoluminescence and high-performance liquid chromatography. The photoluminescent molecules developed herein are suitable for visualizing polymeric degradation, making them suitable for additional "smart" material applications.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiqing Huang
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
6
|
Liu DX, Zhu HL, Zhang WX, Chen XM. Nonlinear Optical Glass-Ceramic From a New Polar Phase-Transition Organic-Inorganic Hybrid Crystal. Angew Chem Int Ed Engl 2023; 62:e202218902. [PMID: 36645367 DOI: 10.1002/anie.202218902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Melt-quenched glasses of organic-inorganic hybrid crystals, i.e., hybrid glasses, have attracted increasing attention as an emerging class of hybrid materials with beneficial processability and formability in the past years. Herein, we present a new hybrid crystal, (Ph3 PEt)3 [Ni(NCS)5 ] (1, Ph3 PEt+ =ethyl(triphenyl)phosphonium), crystallizing in a polar space group P1 and exhibiting thermal-induced reversible crystal-liquid-glass-crystal transitions with relatively low melting temperature of 132 °C, glass-transition temperature of 40 °C, and recrystallization on-set temperature of 78 °C, respectively. Taking advantage of such mild conditions, we fabricated an unprecedented hybrid glass-ceramic thin film, i.e., a thin glass uniformly embedding inner polar micro-crystals, which exhibits a much enhanced intrinsic second-order nonlinear optical effect, being ca. 25.6 and 3.1 times those of poly-crystalline 1 and KH2 PO4 , respectively, without any poling treatments.
Collapse
Affiliation(s)
- De-Xuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
An organic-inorganic hybrid thermochromic ferroelastic with multi-channel switches. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2022.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Enantiomeric hybrid high-temperature multiaxial ferroelectrics with a narrow bandgap and high piezoelectricity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Peng H, Liu Q, Liu Y, Lu Y, Liao W. A chiral lead-free tin(IV)-based halide organic-inorganic semiconductor with dielectric switching and phase transition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
NH4+/K+-substitution-induced C–F–K coordination bonds for designing the highest-temperature hybrid halide double perovskite ferroelastic. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Liang BD, Jin T, Miao LP, Chai CY, Fan CC, Han XB, Zhang W. Deuteration triggered downward shift of dielectric phase transition temperature in a hydrogen-bonded molecular crystal. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Liu S, He L, Wang Y, Shi P, Ye Q. Tunable phase transition, band gap and SHG properties by halogen replacement of hybrid perovskites [(thiomorpholinium)PbX3, X = Cl, Br, I]. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Zhang ZC, Zhang T, Huang PZ, Shao T, Fu DW, Zhang Y. Thermally stimuli-responsive materials with transformable double channels of nonlinear optical and dielectric. Dalton Trans 2022; 51:9857-9863. [DOI: 10.1039/d2dt01413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic-inorganic hybrid materials have received extensive attention and in-depth research in the past few decades due to their superior properties and potential applications in storage, sensing, dielectric switches, actuators and...
Collapse
|
14
|
Wu T, Feng X, Sun X. Chemically triggered soft material macroscopic degradation and fluorescence detection using self-propagating thiol-initiated cascades. Polym Chem 2022. [DOI: 10.1039/d1py01450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we present a new approach for thiol detection through chemically triggered polymeric macroscopic degradation using self-propagating cascades, coupled with photoluminescence.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
15
|
X-site doping in ABX3 triggers phase transition and higher Tc of the dielectric switch in perovskite. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Seo W, Ok KM. Novel noncentrosymmetric polar coordination compounds derived from chiral histidine ligands. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00869b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Noncentrosymmetric chiral Zn- and Cd-coordination compounds have been synthesized by a slow evaporation method using histidine under acidic conditions.
Collapse
Affiliation(s)
- Wooyoung Seo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
17
|
Liu Y, Li YK, Ying TT, Tan YH, Tang YZ, Han DC, Du PK, Zhang H. Multisequential reversible phase transition materials with semiconducting and fluorescence properties: (C 8H 18BrN) 2SnBr 6. NEW J CHEM 2021. [DOI: 10.1039/d1nj04448f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel organic–inorganic hybrid metal halide has synthesized, namely (C8H18BrN)2SnBr6 (1), which have excellent switchable dielectric properties, narrow band gap and broadband yellow fluorescence characteristics.
Collapse
Affiliation(s)
- Yao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Peng-kang Du
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
18
|
Liu SM, Cao YJ, He L, Shi PP, Ye Q. Phosphonium-Based One-Dimensional Perovskite with Switchable Dielectric Behaviors and Phase Transitions. Inorg Chem 2020; 59:18396-18401. [PMID: 33270438 DOI: 10.1021/acs.inorgchem.0c03008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The one-dimensional (1D) ABX3-type perovskite [(CH3)3PCH2F]CdCl2Br (1) has been obtained on the basis of the design of an organic-inorganic hybrid. Strikingly, it experiences sequential phase transitions at around 295 and 336 K, respectively. Given the noticeable steplike dielectric anomalies in the vicinity of 295 K, 1 is identified as a promising dielectric-switchable material. According to the single-crystal structure analysis, the order-to-disorder transformation of the [(CH3)3PCH2F]+ cation is the main reason for the phase transitions and the change of space group from the orthorhombic Pnma (No. 62) to the hexagonal P63/m (No. 176). This design of a perovskite structure will inspire more advances in the ever-growing field of switchable functional materials.
Collapse
Affiliation(s)
- Si-Min Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Ying-Jie Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei He
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Ping-Ping Shi
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiong Ye
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|