1
|
Li K, Zhu D, Cao L, Li C. Chiral Spirobipyridine Synthesis by Cobalt-Catalyzed Enantioselective Double [2 + 2 + 2] Cycloaddition. Angew Chem Int Ed Engl 2025:e202504831. [PMID: 40302560 DOI: 10.1002/anie.202504831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
Chiral spirobiindanes are recognized as the privileged structures in the field of asymmetric catalysis. However, the structurally similar chiral spirobipyridines have not yet been explored as chiral ligands or organocatalysts due to the absence of efficient synthetic methods. Herein, we report a cobalt-catalyzed enantioselective synthesis of spirobipyridines via double [2 + 2 + 2] cycloaddition reaction. Spirobipyridines with ortho- or meta-substituents could be obtained with exclusive regioselectivity and up to 99% ee in the presence of cobalt and bisoxazolinephosphine ligands. Spirobipyridines coordinate with transition metals as chiral ligands. Spirobipyridine dioxides can be applied as chiral organocatalysts in the asymmetric allylation of aldehydes.
Collapse
Affiliation(s)
- Ke Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Danyang Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luyu Cao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Rehman SU, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Sulfonylation from Sulfonyl Hydrazides. Org Lett 2023; 25:3693-3697. [PMID: 37184285 DOI: 10.1021/acs.orglett.3c01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A highly regio- and enantioselective allylic sulfonylation has been developed with rhodium and bisoxazolinephosphine (NPN*) ligands from racemic branched allylic carbonates and readily available sulfonyl hydrazides under neutral conditions. Branch-selective allylic sulfones with a >20:1 branch:linear ratio and >99% ee could be synthesized in ≤96% yield. Both Z and E linear allylic carbonates could also be converted into the same chiral branched allylic sulfones with high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Sun M, Wei L, Li C. Regio- and Enantioselective Allylic Cyanomethylation by Synergistic Rhodium and Silane Catalysis. J Am Chem Soc 2023; 145:3897-3902. [PMID: 36752690 DOI: 10.1021/jacs.3c00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Rh/silane-cocatalyzed regio- and enantioselctive allylic cyanomethylation with inert acetonitrile directly has been developed. Addition of a catalytic amount neutral silane reagent as an acetonitrile anion carrier is essential for the success of this reaction. The synthesis of mono- and bis-allylation products can be switched by adjusting the size of substituents on the silane, ligands, and temperature. Chiral homoallylic nitriles could be synthesized in above 20:1 branch/linear ratio, up to 98% yield and >99% ee.
Collapse
Affiliation(s)
- Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Linsheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Lu HY, He ZT. Catalytic asymmetric synthesis of 1,4-enynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Li B, Liu M, Rehman SU, Li C. Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation. J Am Chem Soc 2022; 144:2893-2898. [PMID: 35157432 DOI: 10.1021/jacs.2c00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-catalyzed branched and enantioselective allylic substitution of monosubstituted precursors with carbon, nitrogen, oxygen, sulfur, and fluoride nucleophiles has been well-established. However, such a selective carbon-phosphorus bond formation has not been realized probably due to the catalyst deactivation by the strong coordinating nature of phosphinylating reagents. Herein, we report a Rh-catalyzed highly regio- and enantioselective synthesis of allylic phosphine oxides in the presence of a chiral bisoxazoline-phosphine ligand. The application of α-hydroxylalkylphosphine oxides to keep the low concentration of the secondary phosphine oxides is essential for the high yields. The addition of diphenyl phosphoric acid was found to not only activate allylic alcohols but also accelerate the carbon-phosphorus bond formation.
Collapse
Affiliation(s)
- Bing Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Min Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Majima K, Yamano M. Diastereoselective Synthesis of a cis-1,3-Disubstituted Cyclobutane Carboxylic Acid Scaffold for TAK-828F, a Potent Retinoic Acid Receptor-Related Orphan Receptor (ROR)-γt Inverse Agonist. J Org Chem 2021; 86:11464-11471. [PMID: 34357761 DOI: 10.1021/acs.joc.1c00970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A scalable synthesis of the cis-1,3-disubstituted cyclobutane carboxylic acid scaffold of TAK-828F (1) has been developed, featuring the diastereoselective reduction of a cyclobutylidene Meldrum's acid derivative with NaBH4. Controlling acidic impurities was crucial for improving the diastereomeric ratio by recrystallization. Furthermore, reaction optimization and the streamlining of several steps established a scalable synthetic method free from column chromatography purification with an overall yield improved from 23 to 39%.
Collapse
Affiliation(s)
- Keisuke Majima
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Mitsuhisa Yamano
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| |
Collapse
|
7
|
Xu WB, Sun M, Shu M, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. J Am Chem Soc 2021; 143:8255-8260. [PMID: 34029072 DOI: 10.1021/jacs.1c04016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alkynylphosphines are rarely used as ligands in asymmetric metal catalysis. We synthesized a series of chiral bis(oxazoline)alkynylphosphine ligands and used them in Rh-catalyzed highly regio- and enantioselective allylic amination reactions of 1,2-disubstituted allylic phosphates. Chiral 1,2-disubstituted allylic amines were synthesized in up to 95% yield with >20:1 branched/linear (b/l) ratio and 99% ee from racemic 1,2-disubstituted allylic precursors. The sterically smaller linear alkynyl group on the P atom in the bis(oxazoline)alkynylphosphine ligands was the key to fit the new requirements of the introduction of bulky 2-R' groups.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mouhai Shu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
9
|
Zheng Y, Liu W. Rhodium-Catalyzed Regio- and Enantio-selective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang X, Luo Y, Qin S, Sun Y, Wang N, Yan J, Yang G. Rh-Catalyzed diastereo- and linear-selective α-allylation of chiral cycloenamines. Org Chem Front 2020; 7:3715-3719. [DOI: 10.1039/d0qo01087a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
In this paper, a Rh-catalyzed diastereoselective α-allylation of cycloenamines is demonstrated.
Collapse
Affiliation(s)
- Xiaoji Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation
- School of Chemical Engineering and Energy Technology
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Yunhao Luo
- The State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Shuanglin Qin
- School of Pharmacy
- Hubei University of Science and Technology
- Xianning
- China
| | - Yue Sun
- The State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Ning Wang
- The State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Jun Yan
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Nankai University
- Tianjin 300071
- People's Republic of China
| |
Collapse
|