1
|
Wang Y, Li M, Yang Z, Lai W, Ge J, Shao M, Xiang Y, Chen X, Huang H. A universal synthesis of ultrathin Pd-based nanorings for efficient ethanol electrooxidation. MATERIALS HORIZONS 2023; 10:1416-1424. [PMID: 36779279 DOI: 10.1039/d2mh01363k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metallic nanorings (NRs) with open hollow structures are of particular interest in energy-related catalysis due to their unique features, which include the high utilization of active sites and facile accessibility for reactants. However, there is still a lack of general methods for synthesizing Pd-based multimetallic NRs with a high catalytic performance. Herein, we develop a template-directed strategy for the synthesis of ultrathin PdM (M = Bi, Sb, Pb, BiPb) NRs with a tunable size. Specifically, ultrathin Pd nanosheets (NSs) are used as a template to steer the deposition of M atoms and the interatomic diffusion between Pd and M, subsequently resulting in the hollow structured NRs. Taking the ethanol oxidation reaction (EOR) as a proof-of-concept application, the PdBi NRs deliver a substantially improved activity relative to the Pd NSs and commercial Pd/C catalysts, simultaneously showing outstanding stability and CO tolerance. Mechanistically, density functional theory (DFT) calculations disclose that the incorporation of Bi reduces the energy barrier of the rate-determining step in the EOR C2-path, which, together with the high ratio of exposed active sites, endows the PdBi NRs with an excellent EOR activity. We believe that our work can illuminate the general synthesis of multimetallic NRs and the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Yu Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Jingjie Ge
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu Xiang
- Research Institute of Chemical Defense, Beijing, 100191, China.
| | - Xuli Chen
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| |
Collapse
|
2
|
Ipadeola AK, Eid K, Lebechi AK, Abdullah AM, Ozoemena KI. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
3
|
Wang C, Bukhvalov D, Goh MC, Du Y, Yang X. Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Sun J, Lao X, Yang M, Fu A, Chen J, Pang M, Gao F, Guo P. Alloyed Palladium-Lead Nanosheet Assemblies for Electrocatalytic Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14930-14940. [PMID: 34910478 DOI: 10.1021/acs.langmuir.1c02816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed Pd3Pb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of Pd3Pb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors. The power X-ray diffraction (XRD) pattern shows that Pd3Pb/Pd NSA catalysts are homogeneously alloyed. Electrochemical analysis and the density functional theory (DFT) method demonstrate that the electrocatalytic activity of the alloyed Pd3Pb/Pd NSAs can be improved by the doping of the Pb element. As a result of the addition of element Pb and change of the electron structure, the electrocatalytic activity toward ethanol oxidation of alloyed Pd3Pb/Pd-15 NSA can reach up to 2886 mA mg-1, which is approximately 2.8 times that of the pure Pd NSA counterpart (1020 mA mg-1). The Pd3Pb/Pd NSAs are favorable in a high catalytic temperature, high KOH concentration, and high ethanol concentration.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|