1
|
Qin H, Wei GL, Zheng XW, Zhang YW, Huang P. Selectfluor Mediated Direct C-H Fluorination of 3-Heteroaryl-Oxindoles. J Org Chem 2024; 89:740-747. [PMID: 38101804 DOI: 10.1021/acs.joc.3c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
An efficient transition-metal-free fluorination synthesis of N-H-free 3-heteroaryl-oxindoles with Selectfluor was depicted. Under mild reaction conditions, a series of 3-heteroaryl-fluorooxindoles were produced in yield of 62-88% using Selectfluor as a fluorine source.
Collapse
Affiliation(s)
- Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Guo-Liang Wei
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Wei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Yi-Wen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Zhu L, Ren Y, Liu X, Xu S, Li T, Xu W, Li Z, Liu Y, Xiong B. Catalyst- and Additive-free, Regioselective 1,6-Hydroarylation of para-Quinone Methides with Anilines in HFIP. Chem Asian J 2023; 18:e202300792. [PMID: 37845179 DOI: 10.1002/asia.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A simple and efficient method for the synthesis of diarylmethyl-functionalized anilines through the hexafluoroisopropanol (HFIP)-mediated regioselective 1,6-hydroarylation reaction of para-quinone methides (p-QMs) with anilines under catalyst- and additive-free conditions is reported. Various kinds of p-QMs and amines (e. g. primary, secondary and tertiary amines) are well tolerated in this transformation without the pre-protection of amino group, and the corresponding products could be generated with good to excellent yields and satisfactory regioselectivity under the optimized reaction conditions. In addition to adaptable amine compounds, indoles and their derivatives are also compatible with this reaction system. This transformation can be easily extended to a gram scale-synthesis level to synthesize the target product. Furthermore, it is worth noting that some complex small aniline molecules with biological activity can be selectively modified using this method. The possible reaction mechanism is proposed through the step-by-step control experiments and DFT calculations, showing that the key process for achieving the regioselective 1,6-hydroarylation of p-QMs is the hydrogen bonding effect of HFIP to substrates.
Collapse
Affiliation(s)
- Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Xianping Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Tao Li
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha, 410007 (P. R., China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| |
Collapse
|
3
|
Ju G, Li Y, Zhao Y. Organic photoredox-catalyzed oxidative azolation of unactivated fluoroarenes. Org Biomol Chem 2023; 21:6503-6508. [PMID: 37540014 DOI: 10.1039/d3ob01041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Inexpensive and commercially available 2,4,6-triphenylpyrrolium tetrafluoroborate (TPT) is used as an organic photocatalyst for the nucleophilic aromatic substitution of unactivated fluoroarenes with pyrazole derivatives (SNAr) to form azole arenes. The use of organic photoredox catalysis enables the easy operation of this method under mild conditions. Various fluorinated aromatic compounds are suitable electrophiles for this transformation.
Collapse
Affiliation(s)
- Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China.
| | - Yalong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China.
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
4
|
Li H, Gu H, Xu N, Lu Y, Jin X, Li J, Guo H, Cao D, Liu J. Rhodium(III)-catalyzed C-H alkylation of arylhydrophthalazinediones with α-Cl ketones as sp 3-carbon alkylated agents. Org Biomol Chem 2023; 21:2096-2100. [PMID: 36809537 DOI: 10.1039/d3ob00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A Rh(III)-catalyzed C-H bond direct alkylation between 2-arylphthalazine-1,4-diones and α-Cl ketones, which are sp3-carbon synthons, under mild conditions has been disclosed. The corresponding phthalazine derivatives are readily obtained in moderate to excellent yields with a wide range of substrates and high functional group tolerance. The practicality and utility of this method are demonstrated by the derivatization of the product.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Haichun Gu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Jiaqi Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Hongyu Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Dawei Cao
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
5
|
Chen X, Pei C, Liu B, Li J, Zou D, Wu Y, Wu Y. Copper-assisted trifluoromethylthiolation/radical cascade cyclization of alkynes to construct SCF 3-containing dioxodibenzothiazepines. Chem Commun (Camb) 2022; 58:8674-8677. [PMID: 35822922 DOI: 10.1039/d2cc02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient Cu-assisted trifluoromethylthiolation/radical cascade cyclization of alkynes with readily available and stable AgSCF3 as the trifluoromethylthiolating reagent has been disclosed. This transformation provides an opportunity to construct a series of potential medicinally valuable trifluoromethylthio-substituted dioxodibenzothiazepines with wide functional group compatibility. This protocol opens up a new avenue for the construction of useful trifluoromethylthiolated seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Congcong Pei
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Bo Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jingya Li
- Tetranov Biopharm, LLC., Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Visible-light-enabled ruthenium-catalyzed para-C−H difluoroalkylation of anilides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Levitre G, Granados A, Cabrera-Afonso MJ, Molander GA. Synthesis of α-Fluorinated Areneacetates through Photoredox/Copper Dual Catalysis. Org Lett 2022; 24:3194-3198. [PMID: 35467893 PMCID: PMC10412000 DOI: 10.1021/acs.orglett.2c00969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of mild and practical conditions for the fluoroalkylation of arenes is an ongoing challenge in chemical organic synthesis. Herein, we report a metallaphotoredox method for the preparation of fluoroalkyl arenes based on the synergistic combination of Ir/Cu dual catalysis from boronic acids. The mild conditions allow broad functional group tolerance, including substrates containing aldehydes, free phenols, and N-Boc-protected amines. Mechanistic investigations support a process proceeding via photoredox/copper dual catalysis.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Suzuki H, Kawai Y, Takemura Y, Matsuda T. Rhodium-catalysed decarbonylative C(sp 2)-H alkylation of indolines with alkyl carboxylic acids and carboxylic anhydrides under redox-neutral conditions. Org Biomol Chem 2022; 20:2808-2812. [PMID: 35318479 DOI: 10.1039/d2ob00249c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed a rhodium-catalysed decarbonylative C(sp2)-H alkylation method for indolines. This reaction facilitates the use of alkyl carboxylic acids and their anhydrides as a cheap, abundant and non-toxic alkyl source under redox-neutral conditions, featuring the introduction of a primary alkyl chain, which cannot be addressed by previous radical-mediated decarboxylative reaction. Through a mechanistic investigation, we revealed that an initially formed C-7 acylated indoline was transformed into the corresponding alkylated indoline via a decarbonylation process.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuya Kawai
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yosuke Takemura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
10
|
Zhang Y, Chen Y, Sun J, Wang J, Zhou M. Visible‐light‐promoted Radical Cyclization/Arylation Cascade for the Construction of
α,
α
‐Difluoro‐
γ
‐Lactam‐Fused
Quinoxalin‐2(
1
H
)‐Ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yun‐Chao Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Yang Chen
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Jing‐Yun Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
11
|
Xu WQ, Tao JY, Liu YJ, Zeng MH. Ruthenium-catalyzed meta-difluoromethylation of arene phosphines enabled by 1,3-dione. Org Chem Front 2022. [DOI: 10.1039/d2qo00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, meta-selective difluoromethylation of arene phosphines has been developed with ruthenium catalysis using 1,3-dione as an effective ligand.
Collapse
Affiliation(s)
- Wen-Qian Xu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jun-Yang Tao
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
12
|
Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Org Chem Front 2022. [DOI: 10.1039/d1qo01544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the advances in transition-metal catalyzed reactions with fluorinated building blocks via directed C–H bond activation for the construction of diverse organic molecules with an insight into the probable mechanistic pathway.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Vivek Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Aishwarya Lad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| |
Collapse
|
13
|
La M, Liu D, Chen X, Zhang FL, Zhou Y. Monodentate Transient Directing Group-Assisted Palladium-Catalyzed Direct ortho-C-H Iodination of Benzaldehydes for Total Synthesis of Hernandial. Org Lett 2021; 23:9184-9188. [PMID: 34787425 DOI: 10.1021/acs.orglett.1c03491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first palladium-catalyzed direct o-C-H iodination of benzaldehydes was successfully developed with the assistance of commercially available 2,5-bis(trifluoromethyl)aniline as the optimal monodentate transient directing group (MonoTDG). Moderate to excellent yields and good selectivity were achieved for a broad substrate scope under mild conditions. More importantly, the synthetic application was demonstrated by a concise two-step total synthesis of the natural product hernandial, which was accomplished by merging this new MonoTDG-assisted C-H iodination and subsequent copper-catalyzed cross-coupling.
Collapse
Affiliation(s)
- Ming La
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Dandan Liu
- Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Xuerong Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, People's Republic of China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
14
|
Joshi A, Iqbal Z, Jat JL, De SR. Pd(II)‐Catalyzed Chelation‐Induced C(sp
2
)‐H Acylation of (Hetero)Arenes Using Toluenes as Aroyl Surrogate. ChemistrySelect 2021. [DOI: 10.1002/slct.202103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asha Joshi
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Zafar Iqbal
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow 226025 India
| | - Saroj R. De
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
15
|
Kuang G, Liu D, Chen X, Liu G, Fu Y, Peng Y, Li H, Zhou Y. Transient Directing Group Strategy as a Unified Method for Site Selective Direct C4-H Halogenation of Indoles. Org Lett 2021; 23:8402-8406. [PMID: 34664971 DOI: 10.1021/acs.orglett.1c03131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A unified method for direct C4-H halogenation of indoles has been accomplished with the assistance of anthranilic acids as suitable transient directing groups. Exclusive site selectivity (one out of five potential reactive sites) as well as good functional group tolerance was obtained to install three kinds of halogen atoms (Cl, Br and I, respectively) by using inexpensive N-halosuccinimides (NXS) as halogen sources under mild conditions. Taking advantage of the rich functional groups in the product, a diversity of nitrogen-containing heterocycles were facily constructed via one-step late-stage derivations.
Collapse
Affiliation(s)
- Guanghua Kuang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dandan Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.,Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, China
| | - Xuerong Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Zhao Y, Ju G, Tu G. Recent Advances in Transition-Metal-Catalyzed Selective C–H Alkoxycarbonyldifluoromethylation Reactions of Aromatic Substrates. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1522-7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorine is well-known as a very special element. Approximately 30% of agrochemicals and 20% of all drugs contain fluorine; most of those compounds have unique functions in biochemistry, pharmacy, and bioscience and those containing alkoxycarbonyldifluoromethyl functional groups often have irreplaceable roles. Therefore, the selective introduction of alkoxycarbonyldifluoromethylated functional groups into various aromatic substrates has significant practical application. This review describes recent advances in selective alkoxycarbonyldifluoromethylation of aromatic substrates by using different catalytic strategies (cyclometalated ruthenium complex, transient regulating and visible-light-induced strategies).1 Introduction2 para-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives2.1 Ruthenium Catalysis2.2 Palladium Catalysis2.3 Visible-Light Catalysis2.4 Iron Catalysis3 meta-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives3.1 Ruthenium Catalysis3.2 Palladium Catalysis4 The Influence of Transition Metals and Directing Groups on Site Selectivity of Alkoxycarbonyldifluoromethylation4.1 The Influence of Directing Groups on the Site Selectivity of Alkoxycarbonyldifluoromethylation4.2 The Influence of Transition Metals on the Site Selectivity of Alkoxycarbonyldifluoromethylation5 Conclusions
Collapse
Affiliation(s)
- Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
- School of Chemistry and Chemical Engineering, Henan Normal University
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| | - Guanglian Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| |
Collapse
|
17
|
Fang L, Fan S, Wu W, Li T, Zhu J. Ruthenium-catalyzed room-temperature coupling of α-keto sulfoxonium ylides and cyclopropanols for δ-diketone synthesis. Chem Commun (Camb) 2021; 57:7386-7389. [PMID: 34223842 DOI: 10.1039/d1cc02576g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous transition metal-catalyzed synthesis processes of δ-diketones are plagued by the high cost of the rhodium catalyst and harsh reaction conditions. Herein a low-cost, room temperature ruthenium catalytic method is developed based on the coupling of α-keto sulfoxonium ylides with cyclopropanols. The mild protocol features a broad substrate scope (47 examples) and a high product yield (up to 99%). Mechanistic studies argue against a radical pathway and support a cyclopropanol ring opening, sulfoxonium ylide-derived carbenoid formation, migratory insertion C-C bond formation pathway.
Collapse
Affiliation(s)
- Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Tielei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Gao QS, Niu Z, Chen Y, Sun J, Han WY, Wang JY, Yu M, Zhou MD. Photoredox Generation of N-Centered Hydrazonyl Radicals Enables the Construction of Dihydropyrazole-Fused gem-Difluoroalkenes. Org Lett 2021; 23:6153-6157. [PMID: 34269587 DOI: 10.1021/acs.orglett.1c02275] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient visible-light-promoted N-radical-mediated tandem radical cyclization/defluorinated alkylation of β,γ-unsaturated hydrazones, and α-trifluoromethyl alkenes is described. This protocol provides a general and effective route to synthesize various dihydropyrazole-fused gem-difluoroalkenes at moderate to excellent yields under redox-neutral, metal-free, and mild conditions.
Collapse
Affiliation(s)
- Qi-Sheng Gao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhuo Niu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Yang Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Wei-Ying Han
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Jing-Yun Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Miao Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
19
|
Kopf S, Ye F, Neumann H, Beller M. Ruthenium-Catalyzed Deuteration of Aromatic Carbonyl Compounds with a Catalytic Transient Directing Group. Chemistry 2021; 27:9768-9773. [PMID: 33844338 PMCID: PMC8361678 DOI: 10.1002/chem.202100468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 12/18/2022]
Abstract
A novel ruthenium-catalyzed C-H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C-H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang ProvinceHangzhou Normal UniversityNo. 2318, Yuhangtang Road311121HangzhouP. R. China
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
20
|
Cao XT, Wei SN, Sun HT, Li M, Zheng ZL, Wang G. Iridium-catalyzed regioselective C-H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Adv 2021; 11:22000-22004. [PMID: 35480792 PMCID: PMC9034132 DOI: 10.1039/d1ra04450h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
We have developed a regioselective C-N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.
Collapse
Affiliation(s)
- Xian-Ting Cao
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Su-Ning Wei
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Hao-Tian Sun
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Meng Li
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Zuo-Ling Zheng
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Guannan Wang
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
21
|
Yang L, Xie H, An G, Li G. Acid-Enabled Palladium-Catalyzed β-C(sp3)–H Functionalization of Weinreb Amides. J Org Chem 2021; 86:7872-7880. [DOI: 10.1021/acs.joc.1c00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liming Yang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Henan Xie
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| |
Collapse
|
22
|
Ackermann L, Korvorapun K, Samanta RC, Rogge T. Remote C–H Functionalizations by Ruthenium Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1485-5156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractSynthetic transformations of otherwise inert C–H bonds have emerged as a powerful tool for molecular modifications during the last decades, with broad applications towards pharmaceuticals, material sciences, and crop protection. Consistently, a key challenge in C–H activation chemistry is the full control of site-selectivity. In addition to substrate control through steric hindrance or kinetic acidity of C–H bonds, one important approach for the site-selective C–H transformation of arenes is the use of chelation-assistance through directing groups, therefore leading to proximity-induced ortho-C–H metalation. In contrast, more challenging remote C–H activations at the meta- or para-positions continue to be scarce. Within this review, we demonstrate the distinct character of ruthenium catalysis for remote C–H activations until March 2021, highlighting among others late-stage modifications of bio-relevant molecules. Moreover, we discuss important mechanistic insights by experiments and computation, illustrating the key importance of carboxylate-assisted C–H activation with ruthenium(II) complexes.1 Introduction2 Stoichiometric Remote C–H Functionalizations3 meta-C–H Functionalizations4 para-C–H Functionalizations5 meta-/ortho-C–H Difunctionalizations6 Conclusions
Collapse
|
23
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
24
|
Mondal B, Ghosh P, Kundu M, Das S. 8-Aminoimidazo[1,2-a]pyridine (AIP) directed Pd(ii) catalysis: site-selective ortho-C(sp2)–H arylation in aqueous medium. Org Biomol Chem 2021; 19:1604-1609. [DOI: 10.1039/d0ob02510k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and facile Pd(ii) catalyzed selective ortho and β-C(sp2)–H arylation reaction employing the 8-AIP (aminoimidazo[1,2-a]pyridine) auxiliary as a removable N,N-bidentate directing group in a green solvent (water) has been reported.
Collapse
Affiliation(s)
- Biswajit Mondal
- TCG Life sciences Pvt. Ltd
- Kolkata 700091
- India
- Department of Chemistry
- University of North Bengal
| | - Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling 734013
- India
| | | | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling 734013
- India
| |
Collapse
|
25
|
Zhao F, Guo S, Zhang Y, Sun T, Yang B, Ye Y, Sun K. Silver-catalyzed decarboxylative radical relay difluoroalkylation–carbocyclization: convenient access to CF 2-containing quinolinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01425k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical Ag-catalyzed formal decarboxylation and radical difluoroalkylation–carbocyclization–hydrolysis route is established to construct a series of structurally diverse CF2-containing N-heterocycles.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Ting Sun
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| |
Collapse
|
26
|
Mondal B, Ghosh P, Kundu M, Das TK, Das S. Palladium catalyzed 8-aminoimidazo[1,2-a]pyridine (AIP) directed selective β-C(sp2)–H arylation. Org Biomol Chem 2021; 19:360-364. [DOI: 10.1039/d0ob02134b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An unprecedented palladium(ii) catalyzed selective β-C(sp2)–H arylation reaction using an 8-AIP (aminoimidazo[1,2-a]pyridine) auxiliary as a new N,N-bidentate directing group has been demonstrated.
Collapse
Affiliation(s)
- Biswajit Mondal
- TCG Life Sciences Pvt. Ltd
- Kolkata-700091
- India
- Department of Chemistry
- University of North Bengal
| | - Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling 734013
- India
| | | | - Tapas Kumar Das
- TCG Life Sciences Pvt. Ltd
- Kolkata-700091
- India
- Department of Chemistry
- University of North Bengal
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling 734013
- India
| |
Collapse
|
27
|
Du HW, Chen Y, Sun J, Gao QS, Wang H, Zhou MD. Synthesis of gem-Difluoroalkenes via Zn-Mediated Decarboxylative/Defluorinative Cross-Coupling. Org Lett 2020; 22:9342-9345. [DOI: 10.1021/acs.orglett.0c03554] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hai-Wu Du
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Yang Chen
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Jing Sun
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Qi-Sheng Gao
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| |
Collapse
|