1
|
Shakibi R, Yazdipour F, Abadijoo H, Manoochehri N, Rostami Pouria F, Bajooli T, Simaee H, Abdolmaleki P, Khatibi A, Abdolahad M, Moosavi-Movahhedi AA, Khayamian MA. From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques. Q Rev Biophys 2025; 58:e7. [PMID: 39817368 DOI: 10.1017/s0033583524000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The membrane potential is a critical aspect of cellular physiology, essential for maintaining homeostasis, facilitating signal transduction, and driving various cellular processes. While the resting membrane potential (RMP) represents a key physiological parameter, membrane potential fluctuations, such as depolarization and hyperpolarization, are equally vital in understanding dynamic cellular behavior. Traditional techniques, such as microelectrodes and patch-clamp methods, offer valuable insights but are invasive and less suited for high-throughput applications. Recent advances in voltage indicators, including fast and slow dyes, and novel imaging modalities such as second harmonic generation (SHG) and photoacoustic imaging, enable noninvasive, high-resolution measurement of both RMP and membrane potential dynamics. This review explores the mechanisms, development, and applications of these tools, emphasizing their transformative potential in neuroscience and cellular electrophysiology research.
Collapse
Affiliation(s)
- Reyhaneh Shakibi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yazdipour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Navid Manoochehri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Farshid Rostami Pouria
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Taraneh Bajooli
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Hossein Simaee
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parviz Abdolmaleki
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Mohammad Ali Khayamian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Mandracchia B, Zheng C, Rajendran S, Liu W, Forghani P, Xu C, Jia S. High-speed optical imaging with sCMOS pixel reassignment. Nat Commun 2024; 15:4598. [PMID: 38816394 PMCID: PMC11139943 DOI: 10.1038/s41467-024-48987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes. sHAPR harnesses custom fiber optics to convert microscopy images into one-dimensional recordings, enabling acquisition at the maximum camera readout rate, typically between 25 and 250 kHz. We have demonstrated the utility of sHAPR with a variety of phantom and dynamic systems, including high-throughput flow cytometry, cardiomyocyte contraction, and neuronal calcium waves, using a standard epi-fluorescence microscope. sHAPR is highly adaptable and can be integrated into existing microscopy systems without requiring extensive platform modifications. This method pushes the boundaries of current fluorescence imaging capabilities, opening up new avenues for investigating high-speed biological phenomena.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- E.T.S.I. Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Suraj Rajendran
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zhu B, Li H, Xie C, Sun M, Mai C, Xie Z, Wu Z, Zhang J, Nie L. Photoacoustic Microscopic Imaging of Cerebral Vessels for Intensive Monitoring of Metabolic Acidosis. Mol Imaging Biol 2023:10.1007/s11307-023-01815-8. [DOI: 10.1007/s11307-023-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
|
4
|
Nikolaev DM, Mironov VN, Shtyrov AA, Kvashnin ID, Mereshchenko AS, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values. Int J Mol Sci 2023; 24:2435. [PMID: 36768759 PMCID: PMC9916766 DOI: 10.3390/ijms24032435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Iaroslav D. Kvashnin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey S. Mereshchenko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov str., lit. A, 197022 Saint Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| |
Collapse
|
5
|
Jiang Y, Zeng Z, Yao J, Guan Y, Jia P, Zhao X, Xu L. Treatment of Alzheimer's disease with small-molecule photosensitizers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
7
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|