Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
J Colloid Interface Sci 2022;
626:879-888. [PMID:
35835039 DOI:
10.1016/j.jcis.2022.07.018]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022]
Abstract
Rapid charge recombination in hematite (Fe2O3) during photoelectrochemical water splitting is a major obstacle to achieving high-efficiency photoelectrodes. Surface defect engineering is considered as a viable strategy for enhancing photoelectrochemical activity of oxide photoanodes. Herein, a one-dimensional (1D) defective γ-Fe2O3 nanorods (DFNRs) photoanode is prepared using solvothermal and high-temperature hydrogenation strategies. The as-prepared DFNRs possess superior visible-light absorption capacity and exhibit excellent photoelectrochemical performance (0.98 mA cm-2), with approximately three-fold higher photocurrent density than that of pristine Fe2O3 (FNRs, 0.32 mA cm-2). The enhanced activity of the DFNRs results from the moderate formation of oxygen vacancy defects, which promotes spatial charge separation and transfer at the DFNRs/electrolyte interface, as well as the 1D nanorod structure, which favors rapid charge transfer. The surface of γ-Fe2O3 with hydroxyl (OH) groups provides sufficient surface-active sites. This result suggests that surface-oxygen deficiency of γ-Fe2O3 can not only expand the light absorption range but also facilitating photo-generated charge carriers separation. This surface engineering strategy provides an alternative method for preparing stable and highly active metal oxide photoanodes for photoelectrochemical water splitting.
Collapse