1
|
Yang H, Du J, Wang W, Li T, Zhang R, Yu Y, Li K, Lin Y. Engineering Cu-Ce-a nanozymes: Revolutionary alloy nanomaterials mimicking cytochrome c oxidase for ultra-sensitive cytochrome c detection. Talanta 2025; 282:126945. [PMID: 39342669 DOI: 10.1016/j.talanta.2024.126945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The design of synthetic analogs of cytochrome c oxidase (CcO) is a formidable task due to its intricate structure encompassing multiple metal prosthetic sites and protein subunits. In recent years, artificial enzymes based on alloy nanomaterials have garnered significant attention due to the alloy design approach holds promise for the effective tuning of the properties of metal catalysts. In this study, we present copper-cerium alloy nanozymes (Cu-Ce-a NEs), where Cu mimics the active site of CcO, while Ce endows the alloy phase and enhances the capacity to catalyze the oxidation to cytochrome c (Cyt c). Cu-Ce-a NEs functionally mimics CcO, the terminal enzyme in the respiratory electron transport chain (ETC), by catalyzing the four-electron reduction of dioxygen to water. Utilizing the CcO-like properties of Cu-Ce-a NEs, we successfully implemented the electrochemical detection of Cyt c. The Cu-Ce-a NEs based electrochemical sensor revealed a favorable linear range spanning from 2 to 20 μM Cyt c, with a detection limit (LOD) of 2 μM. This method demonstrates high accuracy in Cyt c quantitation in pharmaceuticals, with results closely aligning with the actual concentrations. This finding not only offers new perspectives in the design of enzyme analogs, but also underscores the potential of this method for clinical Cyt c detection, highlighting its significance in biomedical research and diagnostics.
Collapse
Affiliation(s)
- Huan Yang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Jingjie Du
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wenzhu Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China; School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Ting Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China; School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Ronghao Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China; School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Wang X, Zhao C, Luo P, Xin Y, Ge Y, Tian H. An artificial aluminum-tin alloy layer on aluminum metal anodes for ultra-stable rechargeable aluminum-ion batteries. NANOSCALE 2024; 16:13171-13182. [PMID: 38913445 DOI: 10.1039/d4nr01318b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rechargeable aluminum ion batteries (RAIBs) exhibit great potential for next-generation energy storage systems owing to the abundant resources, high theoretical volumetric capacity and light weight of the Al metal anode. However, the development of RAIBs based on Al metal anodes faces challenges such as dendrite formation, self-corrosion, and volume expansion at the anode/electrolyte interface, which needs the rational design of an aluminum anode for high-performance RAIBs. This work proposes a novel and low-cost strategy by utilizing an alloy electrodeposition method in a low-temperature molten salt system to fabricate an aluminum-tin (AlSn) alloy coating layer on copper foil as the anode for RAIBs, which successfully addresses the issues of dendrite formation and corrosion at the anode/electrolyte interface. The artificial AlSn alloy layer could enhance the active sites for metal Al homogeneous deposition and effectively retard the dendrite formation, which was verified by an in situ optical microscopy study. The symmetric AlSn@Cu cell demonstrates a low average overpotential of ∼38 mV at a current density of 0.5 mA cm-2 and a long-term lifespan of over 1100 h. Moreover, the AlSn@Cu//Mo6S8 full cells deliver a high capacity of 114.9 mA h g-1 at a current density of 100 mA g-1 and maintain ultra-stable cycling stability even over 1400 cycles with a ∼100% coulombic efficiency (CE) during the long-term charge/discharge processes. This facile alloy electrodeposition approach for designing high-performance Al-based anodes provides insights into the understanding of artificial interface chemistry on Al-based anodes and potentially accelerates the design of high-performance RAIBs.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Chen Zhao
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Peng Luo
- Institute of Digital Technology, State Grid Digital Technology Holding Co., Ltd, China
| | - Yan Xin
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Yunnian Ge
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
3
|
Liu S, Yang QY, Chen S, Yu YL, Wang JH. Ultrasonic Nebulization-Accelerated Gas-Phase Enrichment Following In Situ Microplasma Desorption for Analysis of Trace Heavy Metals by Optical Emission Spectrometry. Anal Chem 2022; 94:16549-16554. [DOI: 10.1021/acs.analchem.2c04149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shuang Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Qing-Yun Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
4
|
Dhillon SK, Chaturvedi A, Gupta D, Nagaiah TC, Kundu PP. Copper nanoparticles embedded in polyaniline derived nitrogen-doped carbon as electrocatalyst for bio-energy generation in microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80787-80804. [PMID: 35729378 DOI: 10.1007/s11356-022-21437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (SC-MFCs) have emerged as green energy devices to resolve the growing energy and environmental crisis. However, the technology's application depends on the sluggish oxygen reduction reaction (ORR) kinetics. Among the electrocatalysts explored, transition metal-nitrogen-carbon composites exhibit satisfactory ORR activity. Herein, we investigate the performance of copper-nitrogen-carbon (Cu/NC) electrocatalysts for ORR, highlighting the effect of temperature, role of nitrogen functionalities, and Cu-Nx sites in catalyst performance. Cu/NC-700 demonstrated satisfactory ORR activity with an onset potential of 0.7 V (vs. RHE) and a limiting current density of 3.4 mA cm-2. Cu/NC-700 modified MFC exhibited a maximum power density of 489.2 mW m-2, higher than NC-700 (107.3 mW m-2). These observations could result from synergistic interaction between copper and nitrogen atoms, high density of Cu-Nx sites, and high pyridinic-N content. Moreover, the catalyst exhibited superior stability, implying its use in long-term operations. The electrocatalytic performance of the catalyst suggests that copper-doped carbon catalysts could be potential metal-nitrogen-carbon material for scaled-up MFC applications.
Collapse
Affiliation(s)
- Simran Kaur Dhillon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Amit Chaturvedi
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
5
|
Deng YL, Li W, Pan CY. Synthesis, structure and oxygen reduction reaction activity of a Ni-containing tartratoborate Na[Ni(py)2]2·[(C4H2O6)2B]·H2O (py = pyridine) and a copper complex borate [Cu(H2O)2(1-EI)4]·[B5O6(OH)4]2·H2O (1-EI = 1-ethylimidazole). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang T, Li X, Qin Z, Wang T, Zhao Y. Activating photocatalytic hydrogen generation on inorganic lead-free Cs2AgBiBr6 perovskite via reversible Cu2+/Cu+ redox couple. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Li W, Qi K, Lu X, Qi Y, Zhang J, Zhang B, Qi W. Electrochemically Assisted Cycloaddition of Carbon Dioxide to Styrene Oxide on Copper/Carbon Hybrid Electrodes: Active Species and Reaction Mechanism. Chemistry 2022; 28:e202200622. [DOI: 10.1002/chem.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wenze Li
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
| | - Ke Qi
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Yujie Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Jialong Zhang
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| |
Collapse
|
8
|
Li W, Deng YL, Pan CY. Structural Characterization and ORR Activity of a Copper Complex Borate and an Unexpected [Ni(atta)(SO 4) 0.5] + Borate-Sulfate. Inorg Chem 2022; 61:7787-7793. [PMID: 35543612 DOI: 10.1021/acs.inorgchem.2c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two metal templated borates, [Ni(atta)(SO4)0.5]·[B5O6(OH)4] (1) and [Cu(1-MI)4]·[B5O6(OH)4]2·1-MI2 (2), have been synthesized. The structures were determined by single-crystal X-ray diffraction and further characterized by Fourier transform infrared (FTIR), elemental analysis, and powder X-ray diffraction (PXRD). The structure of 1 consists of [B5O6(OH)4]- clusters and [Ni(atta)(SO4)0.5]+ complexes, which shows a very rare Ni-O-S bond. 1 and 2 exhibit a hydrogen-bonded network formed by [B5O6(OH)4]- clusters. Oxygen reduction reaction (ORR) activities of 1 and 2 were explored.
Collapse
Affiliation(s)
- Wei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Yan-Ling Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| |
Collapse
|
9
|
|