1
|
Mushtaq A, Irfan M, Haq AU, Mansha A, Khan SG, Zahoor AF, Parveen B, Irfan A, Kotwica-Mojzych K, Glowacka M, Mojzych M. Novel transition metal-free synthetic protocols toward the construction of 2,3-dihydrobenzofurans: a recent update. Front Chem 2024; 12:1470861. [PMID: 39734577 PMCID: PMC11672212 DOI: 10.3389/fchem.2024.1470861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 12/31/2024] Open
Abstract
2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles. This review summarizes the transition-metal-free, efficient, and novel synthetic pathways toward constructing the dihydrobenzofuran nucleus established after 2020.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Atta ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Basic Sciences, Department of Histology, Embriology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Glowacka
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| | - Mariusz Mojzych
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| |
Collapse
|
2
|
Sang QQ, Chen ZL, Yao N, Xuan J. Visible-Light-Promoted N-H Insertion/Controllable Transformation of Diazoalkanes and 3-Aminomethylated Maleimides. J Org Chem 2024; 89:13608-13622. [PMID: 39235899 DOI: 10.1021/acs.joc.4c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The utilization of photogenerated carbene species to perform N-H insertion reactions has attracted considerable attention in the past few years. In this Article, we disclose a visible-light-promoted N-H insertion of 3-aminomethylated maleimides with aryl diazoacetates under sole blue LED irradiation. Continuous flow reactor technology was exploited to improve the reaction efficiency. By simply varying the reaction conditions, the formed N-H insertion products could be selectively transferred to bioimportant octahydropyrrolo[3,4-c]pyrroles and E-selective trisubstituted olefins.
Collapse
Affiliation(s)
- Qian-Qian Sang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ze-Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Na Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
3
|
Yamini P, Babbar A, Yadagiri D. Light-Driven Intramolecular Cyclopropanation of Alkene-Tethered N-Tosylhydrazones: Synthesis of Fused-Cyclopropane γ-Lactones. Org Lett 2024; 26:6035-6040. [PMID: 38985949 DOI: 10.1021/acs.orglett.4c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Fused-cyclopropane ring-containing γ-lactone compounds are versatile building blocks in many fields, including the synthesis of biologically active compounds. Here, we report the light-driven intramolecular cyclopropanation of alkene-tethered N-tosylhydrazones in the presence of Cs2CO3 and visible light. We have synthesized various electronically and sterically substituted and heterocyclic-containing fused-(spiro)cyclopropane γ-lactone compounds in good yields under transition metal-free conditions using a radical-free approach. In addition, the one-pot synthesis of fused-cyclopropane γ-lactones from α-ketoesters and their synthetic utility are also presented.
Collapse
Affiliation(s)
- Pokhriyal Yamini
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Akanksha Babbar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dongari Yadagiri
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Liu Y, Yang Q, Wang W, Fu Y, Ding Q, Peng Y. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones and cyclic ethers toward quinazoline-based hybrids. Org Biomol Chem 2024; 22:4332-4346. [PMID: 38726656 DOI: 10.1039/d4ob00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An effective approach for the construction of 4-short-chain ether attached carbonyl group-substituted quinazolines was developed. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones, and cyclic ethers, with a broad substrate scope and excellent functional group tolerance, under extremely mild conditions without the need for any additional additives and catalysts, selectively led to quinazoline-based hybrids in good to excellent yields. The synthesized hybrids, which are a conglomeration of a quinazoline, a short-chain ether, and a carbonyl group in one molecular skeleton, have potential for application in the development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Wei Wang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
5
|
Ashraf R, Zahoor AF, Ali KG, Nazeer U, Saif MJ, Mansha A, Chaudhry AR, Irfan A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Adv 2024; 14:14539-14581. [PMID: 38708111 PMCID: PMC11066739 DOI: 10.1039/d4ra01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The synthesis of dihydrobenzofuran scaffolds bears pivotal significance in the field of medicinal chemistry and organic synthesis. These heterocyclic scaffolds hold immense prospects owing to their significant pharmaceutical applications as they are extensively employed as essential precursors for constructing complex organic frameworks. Their versatility and importance make them an interesting subject of study for researchers in the scientific community. While exploring their synthesis, researchers have unveiled various novel and efficient pathways for assembling the dihydrobenzofuran core. In the wake of extensive data being continuously reported each year, we have outlined the recent updates (post 2020) on novel methodological accomplishments employing the efficient catalytic role of several transition metals to forge dihydrobenzofuran functionalities.
Collapse
Affiliation(s)
- Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
6
|
Yao WZ, Cai BG, Xuan J. Rhodium-Catalyzed [3+2]-Cycloaddition of in-situ Generated Nitrile Ylides with Nitrosoarenes. Chem Asian J 2023:e202301053. [PMID: 38108615 DOI: 10.1002/asia.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Herein we report the rhodium-catalyzed one-pot three-component reaction of diazo compounds, nitriles, and nitrosoarenes to construct 2,5-dihydro-1,2,4-oxadiazole derivatives. Mechanistic studies indicate that the transformation may proceed through the formation of nitrile ylides intermediates, which then undergo [3+2]-cycloaddition with nitrosoarenes. The strategy exhibits several synthetic advantages, including operational simplicity, good functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Wei-Zhong Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
7
|
Lv Y, Wang Z, Song L, Hao J, Zhu S, Yue H, Wei W, Yi D. Copper-Catalyzed Three-Component Tandem Reaction of Alkynes, α-Diazo Esters, and TMSN 3 to Access N-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38047963 DOI: 10.1021/acs.joc.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient copper-catalyzed three-component tandem reaction of alkynes, α-diazo esters, and TMSN3 to construct triazoles has been developed. Through this strategy, a number of diverse N-substituted 1,2,3-triazoles were conveniently obtained in moderate to good yields from simple and readily available starting materials using K2CO3 as the base. The mechanism of the tandem Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and Cu-carbenoid-participated C-N coupling reaction has been investigated.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhiwei Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lianhui Song
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jindong Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
8
|
Hussain Y, Empel C, Koenigs RM, Chauhan P. Carbene Formation or Reduction of the Diazo Functional Group? An Unexpected Solvent-Dependent Reactivity of Cyclic Diazo Imides. Angew Chem Int Ed Engl 2023; 62:e202309184. [PMID: 37506274 DOI: 10.1002/anie.202309184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
9
|
Deng YH, Xu WL, Wang L, Tang CY, Fu JY, Zhang CB. Regio- and diastereoselective synthesis of diverse spirocyclic indenes by cyclization with indene-dienes as two carbon building blocks. Org Biomol Chem 2023; 21:6681-6686. [PMID: 37540130 DOI: 10.1039/d3ob00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report a base-promoted cyclization with indene-dienes as two carbon building blocks toward diverse spirocyclic indene scaffolds including hexacyclic spiroindenes bearing benzo pyran motifs and pentacyclic spiroindenes containing oxindole units in high yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Lei Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Cheng-Yang Tang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Chuan-Bao Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Cai BG, Xu GY, Xuan J. Photochemical multicomponent transformation of acceptor-only diazoalkanes by merging their cycloaddition and carbene reactivities. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Guo W, Zhou Y, Xie H, Yue X, Jiang F, Huang H, Han Z, Sun J. Visible-light-induced organocatalytic enantioselective N-H insertion of α-diazoesters enabled by indirect free carbene capture. Chem Sci 2023; 14:843-848. [PMID: 36755716 PMCID: PMC9890670 DOI: 10.1039/d2sc05149d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
While asymmetric insertion of metal carbenes into H-X (X = C, N, O, etc.) bonds has been well-established, asymmetric control over free carbenes is challenging due to the presence of strong background reactions and lack of any anchor for a catalyst interaction. Here we have achieved the first photo-induced metal-free asymmetric H-X bond insertion of this type. With visible light used as a promoter and a chiral phosphoric acid used as a catalyst, α-diazoesters and aryl amines underwent smooth N-H bond insertion to form enantioenriched α-aminoesters with high efficiency and good enantioselectivity under mild conditions. Key to the success was the use of DMSO as an additive, which served to rapidly capture the highly reactive free carbene intermediate to form a domesticated sulfoxonium ylide.
Collapse
Affiliation(s)
- Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongling Xie
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hai Huang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zhengyu Han
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China .,Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR China.,Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
| |
Collapse
|
12
|
Lu DL, Yao YY, Liang YF, Liang C, Lei L, Ma L, Mo DL. Synthesis of Tetrahydro-5 H-indolo[2,3- b]quinolines through Copper-Catalyzed Cascade Reactions of Aza- o-quinone Methides with Indoles. J Org Chem 2023; 88:690-700. [PMID: 36485009 DOI: 10.1021/acs.joc.2c02140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of tetrahydro-5H-indolo[2,3-b]quinolines were prepared in 40-97% yields through a copper(II)-catalyzed cascade reaction of aza-o-quinone methides generated in situ from 2-(chloromethyl)anilines and indoles. Experimental results showed that the reaction underwent double 1,4-additions and sequential intramolecular cyclization. The present method features broad substrate scope, good functional group tolerance, and easy gram scalable preparation of indolo[2,3-b]quinolines.
Collapse
Affiliation(s)
- Dong-Liu Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yi-Yun Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yu-Feng Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.,College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Lu Lei
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Lu Ma
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
13
|
Happy S, Junaid M, Yadagiri D. Reactivity of quinone methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Chem Commun (Camb) 2022; 59:29-42. [PMID: 36484325 DOI: 10.1039/d2cc05623b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, quinone methides have broadly been applied in synthesis and biological systems for synthesizing heterocyclic compounds and biologically active molecules. In this feature article, we have discussed the novel and uncovered reactivity of o-quinone methides, p-quinone methides, aza-o-quinone methides, and indolyl-2-methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Two in situ-generated transient intermediates undergo cycloannulation reactions, metathesis-type reactions, 1,6-conjugate addition reactions, cyclopropanation reactions, and many other transformations to access nitrogen- and oxygen-containing heterocyclic compounds and beyond. The reactivity of quinone methides and carbenes is observed in various metal catalysts, Brønsted-acids, Lewis acids, phase transfer catalysts, additives, and visible-light-induced transformations.
Collapse
Affiliation(s)
- Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
14
|
Sharland JC, Dunstan D, Majumdar D, Gao J, Tan K, Malik HA, Davies HML. Hexafluoroisopropanol for the Selective Deactivation of Poisonous Nucleophiles Enabling Catalytic Asymmetric Cyclopropanation of Complex Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David Dunstan
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dyuti Majumdar
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jinhai Gao
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hasnain A. Malik
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J Org Chem 2022; 87:12921-12931. [PMID: 36130274 DOI: 10.1021/acs.joc.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple visible-light-initiated strategy has been established for the construction of organophosphorus compounds via aerobic multicomponent reaction of α-diazoesters, cyclic ethers, and P(O)H compounds under air. A number of phosphonates and phosphinates could be efficiently isolated in moderate to good yields without the use of photosensitizers and metal reagents. This multicomponent reaction has advantages of mild condition, simple operation, eco-friendly energy, good functional-group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| |
Collapse
|
16
|
Cai BG, Li Q, Empel C, Li L, Koenigs RM, Xuan J. Dark and Light Reactions of Carbenes─Merging Carbene Transfer Reactions with N-Heterocyclic Carbene Catalysis for the Synthesis of Hydroxamic Acid Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
17
|
Wang Z, Hao J, Lv Y, Qu C, Yue H, Wei W. Additive‐Free Visible‐Light‐Initiated Three‐Component Cyanation and Azidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiwei Wang
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Jindong Hao
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yufen Lv
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chengming Qu
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Huilan Yue
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wei
- Qufu Normal University Chemistry Jingxuan west road 57 number 273165 Qufu CHINA
| |
Collapse
|
18
|
Chen R, Ma G, Li Y, Zhang J, Xia R, Wang KK, Liu L. TBAI-Catalyzed S-H and N-H Insertion Reactions of α-Diazoesters with Thiophenols and Amines under Metal-Free Conditions. J Org Chem 2022; 87:10990-10999. [PMID: 35916386 DOI: 10.1021/acs.joc.2c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mild, convenient, and effective TBAI-catalyzed S-H and N-H insertion reactions of α-diazoesters with thiophenols and aromatic amines under metal-free conditions have been described, furnishing a straightforward and general platform for the synthesis of various thioethers and 2-amino-2-oxoacetates in moderate to excellent yields. Moreover, this strategy features simple operation, mild conditions, broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang 453003, P.R. China
| | - Guoyang Ma
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, P.R. China
| | - Yawen Li
- School of Pharmacy, Xinxiang University, Xinxiang 453003, P.R. China
| | - Jinju Zhang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, P.R. China
| | - Ran Xia
- School of Pharmacy, Xinxiang University, Xinxiang 453003, P.R. China
| | - Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, P.R. China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| |
Collapse
|
19
|
Li F, Zhu S, Koenigs RM. Photocatalytic 1,2-oxo-alkylation reaction of styrenes with diazoacetates. Chem Commun (Camb) 2022; 58:7526-7529. [PMID: 35703319 DOI: 10.1039/d2cc02414d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on the photocatalytic 1,2-difunctionalization reaction of styrenes with acceptor-only diazoalkanes. In the presence of DABCO and tBuOOH, the carbene reactivity of diazoalkanes can be suppressed and a 1,2 oxo-alkylation reaction can be achieved (32 examples, up to 94% yield) without the formation of cyclopropane by-products via the formation of radical intermediates from ethyl diazoacetate.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Siqi Zhu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
20
|
Diastereodivergent formal [4 + 1] cycloaddition of azoalkenes as one-carbon synthons. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
22
|
Chen ZL, Empel C, Wang K, Wu PP, Cai BG, Li L, Koenigs RM, Xuan J. Enabling Cyclopropanation Reactions of Imidazole Heterocycles via Chemoselective Photochemical Carbene Transfer Reactions of NHC-Boranes. Org Lett 2022; 24:2232-2237. [PMID: 35274531 DOI: 10.1021/acs.orglett.2c00609] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein we report a site-selective cyclopropanation of N-heterocyclic carbene (NHC)-borane complexes via photochemical carbene transfer reactions. By subtle changes to the reaction conditions, this approach can be further extended toward the difunctionalization of NHC-boranes via cyclopropanation and the B-H insertion reaction. Further investigations in photochemical continuous-flow applications and synthetic transformations proved the utility of the method. Theoretical calculations and control experiments were performed to explain the observed selectivity.
Collapse
Affiliation(s)
- Ze-Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Kun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Pan-Pan Wu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
23
|
Zhou X, Zhang A, Zhang Q, Liu Q, Xuan J. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Wang Z, Liu R, Qu C, Zhao XE, Lv Y, Yue H, Wei W. Elemental sulfur as the “S” source: visible-light-mediated four-component reactions leading to thiocyanates. Org Chem Front 2022. [DOI: 10.1039/d2qo00539e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An eco-friendly and photocatalyst-free visible-light-promoted four-component reaction of α-diazoesters, elemental sulfur, cyclic ethers and TMSCN leading to thiocyanates is described.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ruisheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| |
Collapse
|
25
|
Ji X, Fu R, Wang S, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch Reaction of Phenol/ Arylamine-Linked 1,6-Enynes with Perhalogenated Methane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Ushakov P, Ioffe S, Sukhorukov AY. Recent advances in the application of ylide-like species in [4+1]-annulation reactions: an update review. Org Chem Front 2022. [DOI: 10.1039/d2qo00698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, advances in [4+1]‐annulation reactions involving sulfonium, sulfoxonium and ammonium ylides, as well as diazo compounds and carbenes are summarized over the last 6 years. Newly emerged methods...
Collapse
|
27
|
Ding H, Wang Z, Qu C, Lv Y, Zhao X, Wei W. Visible-light-mediated multi-component carbene transfer reactions of α-diazoesters to construct multisubstituted pyrazoles and 1,3-dicarbonyl derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted strategy has been developed for the assembly of multisubstituted pyrazoles and 1,3-dicarbonyl derivatives via a multi-component carbene transfer reaction of α-diazoesters.
Collapse
Affiliation(s)
- Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Zhiwei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P.R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P.R. China
| |
Collapse
|
28
|
Cai BG, Li Q, Li L, Xuan J. Carbon-oxygen bond formation via visible-light-induced O–H insertion between acylsilanes and oximes. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
29
|
Li Q, Cai BG, Li L, Xuan J. Oxime Ether Synthesis through O-H Functionalization of Oximes with Diazo Esters under Blue LED Irradiation. Org Lett 2021; 23:6951-6955. [PMID: 34382794 DOI: 10.1021/acs.orglett.1c02555] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A green and sustainable oxime ether formation method via the visible-light-promoted O-H functionalization of oximes with diazo esters is described. The reaction occurs under very mild conditions (catalyst- and additive-free) with a high yield and a high functional group tolerance. When the reaction was performed with a cyclic ether as the solvent (e.g., THF, 1,4-dioxane, tetrahydropyran, ect.), an interesting photochemical three-component reaction product was obtained in good yields.
Collapse
Affiliation(s)
- Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
30
|
Cai BG, Li Q, Zhang Q, Li L, Xuan J. Synthesis of trisubstituted hydroxylamines by a visible light-promoted multicomponent reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01102b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A green and efficient route for the synthesis of trisubstituted hydroxylamines from β-keto ester, 2-nitrosopyridine and aryldiazoacetates has been reported. This multicomponent reaction occurred under mild conditions without catalysts or additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China
| |
Collapse
|
31
|
Cai B, Xuan J. Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|