1
|
Xu N, Chen J, Sun K, Han W. Ligand-Free Iron-Catalyzed Carbonylation of Aryl Iodides with Alkenyl Boronic Acids: Access to α,β-Unsaturated Ketones. Org Lett 2024; 26:9460-9465. [PMID: 39471048 DOI: 10.1021/acs.orglett.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The application of earth-abundant and low-toxicity iron catalysts as replacements for palladium in carbonylative coupling reactions remains challenging and largely unexplored. Reported here is a highly efficient iron-catalyzed carbonylation of aryl iodides with alkenyl boronic acids under ligand-free conditions, enabling the synthesis of α,β-unsaturated ketones even at atmospheric CO pressure. The broad applicability, including its effectiveness with α-branched enones and biologically active molecules, along with high yields and selectivity, underlines the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Ning Xu
- Inner Mongolia Key Laboratory of the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry, and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Fan F, Peng Y, Zhang X, Wang S, Luo Z, Luo M, Zeng X. Metal-carbene-guided twofold cross-coupling of ethers with chromium catalysis. Nat Commun 2024; 15:6455. [PMID: 39085244 PMCID: PMC11292013 DOI: 10.1038/s41467-024-50675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Coupling by metal-carbene transfer enables the formation of several different bonds at the carbenoid site, enabling prochiral Csp3 centers that are fundamental three-dimensional substructures for medicines to be forged with increased efficiency. However, strategies using bulk chemicals are rare because of the challenge of breaking two unactivated geminal bonds. Herein, we report the reactivity of ethers to form metal-carbene intermediate by cleavage of α-Csp3-H/Csp3-O bonds, which achieve selective coupling with arylmagnesium bromides and chlorosilanes. These couplings are catalysed by cyclic (alkyl)(amino)carbene-chromium complex and enable the one-step formation of 1,n-arylsilyl alcohols and α-arylated silanes. Mechanistic studies indicate that the in-situ formed low-valent Cr might react with iodobenzene to form phenyl radical species, which abstracts the α-H atom of ether in giving α-oxy radical. The latter combines with Cr by breaking α-Csp3-O bond to afford metal-carbene intermediate, which couples with aryl Grignard and chlorosilane to form two σ-bonds.
Collapse
Affiliation(s)
- Fei Fan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yong Peng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sha Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Xiao W, Wu J. Recent advance in carbocation-catalyzed reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
I2/PhI(OAc)2-assisted oxidative C-H amination protocols toward metal-free pragmatic synthesis of pyrrolo[2,3-b]indoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Generation of sulfonylureas under photoredox catalysis and their biological evaluations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|