1
|
Pei G, Wang P, Lin L, Zhang H, Wei R, Liao S. Photocatalytic Radical Azido/Fluorosulfonylation of Unactivated Alkenes: Accessing Hubs Bridging CuAAC and SuFEx Click Chemistry. Org Lett 2025; 27:2467-2474. [PMID: 40017314 DOI: 10.1021/acs.orglett.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Herein, we describe the successful development of an azido-fluorosulfonylation reaction of alkenes under photoredox catalysis, which could allow the installation of the two "clickable" groups, -N3 and -SO2F, on a C-C double bond, with TMSN3 as the azide source. The utilization of the difunctionalization products is also demonstrated in the construction of a library of 1,2,3-triazolesulfonyl fluoride compounds as well as drug molecule ligation by merging copper-catalyzed azide-alkyne cycloaddition (CuAAC) and sulfur(VI) fluoride exchange (SuFEx), the two generations of click reactions. Mechanistic studies suggest a radical fluorosulfonylation/azidation mechanism and unveil FSO2N3 as a new and potential fluorosulfonyl radical precursor.
Collapse
Affiliation(s)
- Guanhua Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei, Normal University, Huaibei, Anhui 235000, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Honghai Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rongbiao Wei
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Liu B, Liang H, Lu Y, Huang S. Electrochemical Radical Fluorosufonylation of Allyl Bromides. Org Lett 2025; 27:2170-2173. [PMID: 39977125 DOI: 10.1021/acs.orglett.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A radical fluorosulfonylation of allyl bromides was achieved under electroreductive conditions. This catalyst-free protocol employs mild conditions and enables straightforward access to a new and structurally diverse variety of previously inaccessible allyl sulfonyl fluorides. We have also illustrated the synthetic value of this method by performing scaled-up reactions and product derivatization.
Collapse
Affiliation(s)
- Bingcong Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Wei MK, Zhang ZX, Ding M, Willis MC. Friedel-Crafts Reactivity with Sulfondiimidoyl Fluorides for the Synthesis of Heteroaryl Sulfondiimines. Angew Chem Int Ed Engl 2025; 64:e202416638. [PMID: 39392677 DOI: 10.1002/anie.202416638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Sulfur functional groups are ubiquitous in molecules used in the pharmaceutical and agrochemical industries, and within these collections sulfones hold a prominent position. The double aza-analogues of sulfones, sulfondiimines, offer significant potential in discovery chemistry but to date their applications have been limited by the lack of convenient synthetic routes. The existing methods mainly rely on imination of low-valent-sulfur intermediates, or the combination of pre-formed organometallic reagents and electrophilic S(VI)-functionalities. Herein, we describe a Friedel-Crafts-type reaction of sulfondiimidoyl fluorides with (hetero)aryls. This new SuFEx reactivity benefits from broad functional group tolerance, mild reaction conditions, and does not require the use of pre-formed organometallic reagents. The efficient use of unprotected indoles and pyrroles, as well as furan, thiophene and carbocyclic aromatics, further demonstrates the advantages of these reactions. We show that the reactivity of the sulfondiimidoyl fluorides can be tuned by switching the N-substituents, allowing an expansion of the range of coupling partners. The utility of the transformation is exemplified by the synthesis of the sulfondiimine analogue of the HIV-I reverse transcriptase-inhibitor L-737,126.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Yang WP, Miao HJ, Wang G, Yang X, Wang X, Liu L, Duan XH, Guo LN. Photoinduced Aromatization-Driven Deconstructive Fluorosulfonylation of Spiro Dihydroquinazolinones. J Org Chem 2024; 89:18713-18722. [PMID: 39614825 DOI: 10.1021/acs.joc.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A catalyst-free photoinduced deconstructive fluorosulfonylation cascade of spiro dihydroquinazolinones with DABSO and NFSI is reported. This protocol features mild reaction conditions, good yields and excellent functional group tolerance, providing a practical approach to the quinazolin-4(1H)-one-functionalized aliphatic sulfonyl fluorides. In addition, the ease of gram-scale synthesis and the versatility of the SuFEx exchange highlight the application potential of this protocol.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xiaoyu Yang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xianjun Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Sun H, Meng W, Ma X, Cheng Z, Chen C, Ni Y, Yan F, Zhu Q, Zhang P, Sui X. Photoredox-Catalyzed Three-Component Construction of Aryl Sulfonyl Fluoride Using KHF 2: Late-Stage Drug Fluorosulfonylation. J Org Chem 2024; 89:16594-16599. [PMID: 39482942 DOI: 10.1021/acs.joc.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aryl sulfonyl fluorides are prominently featured in organic synthesis and medicinal chemistry. Herein, a metal-free photoredox-catalyzed three-component assembly of aryl sulfonyl fluoride via aryl sulfonyl ammonium salt intermediate has been reported. A variety of structurally diverse aryl sulfonyl fluorides were synthesized rapidly from dibenzothiophenium (DBT) salts under mild conditions by using KHF2 as the fluorine source. Notably, this methodology can be employed as an efficient and sustainable approach for late-stage drug fluorosulfonylation. Good yields and broad functionality tolerance were the features of this methodology. Moreover, the derivatization of aryl sulfonyl fluoride molecules was also demonstrated to showcase its synthetic utility.
Collapse
Affiliation(s)
- Hanhan Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wanqing Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhiling Cheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Cheng Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yan Ni
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fengying Yan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiaomei Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ping Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xianwei Sui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
6
|
Wei R, Huang Y, Afanasyev OI, Li Y, Chusov D, Liao S. Cyano-Fluorosulfonylation of Unactivated Alkenes by Photoredox and Copper Dual Catalysis. Org Lett 2024; 26:9132-9137. [PMID: 39413408 DOI: 10.1021/acs.orglett.4c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Both fluorosulfonyl and cyano groups are important structural motifs in bioactive molecules. Herein, we report a new difunctionalization reaction of alkenes based on fluorosulfonyl radicals, which allows for the introduction of the fluorosulfonyl and cyano groups into unactivated alkenes in one step. This transformation is enabled by merging photoredox and copper catalysis, featuring visible light catalysis, mild conditions, and good functional group tolerance. Further transformation of products via SuFEx reactions is also demonstrated.
Collapse
Affiliation(s)
- Rongbiao Wei
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Du HJ, Qi L, Yan ZM, Liu JL, Li W, Wang LJ. Copper-Catalyzed Oxyfluorosulfonylation of β,γ-Unsaturated Oximes with Sulfur Dioxide and Selectfluor for Isoxazoline-Functionalized Aliphatic Sulfonyl Fluorides. J Org Chem 2024; 89:13847-13852. [PMID: 39297778 DOI: 10.1021/acs.joc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this report, we describe a copper-catalyzed cascade reaction involving oxygen radical-induced cyclization/SO2 insertion/fluorination of β,γ-unsaturated oximes with sulfur dioxide and Selectfluor under mild conditions for the synthesis of isoxazoline-functionalized aliphatic sulfonyl fluorides. The synthetic potential of these compounds has been evaluated through diverse SuFEx reactions.
Collapse
Affiliation(s)
- Hui-Jie Du
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jia-Li Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| |
Collapse
|
8
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
9
|
Sun DZ, Hu X, Long F, Peng CC, Zhang KY, Li Q, Liu JH, Wu LJ, Yin SF. Fe-Catalyzed Fluorosulfonylation of Alkenes via Sulfur Dioxide Insertion: Synthesis of Lactam-Functionalized Alkyl Sulfonyl Fluorides. Org Lett 2024; 26:6983-6987. [PMID: 39140705 DOI: 10.1021/acs.orglett.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A novel Fe-catalyzed fluorosulfonylation of alkenes with Na2S2O4 and N-fluorobenzenesulfonimide (NFSI) for assembling various lactam-functionalized alkyl sulfonyl fluorides is disclosed. In this reaction, Na2S2O4 acts as both an SO2 source and a reductant. Furthermore, the resulting products can be efficiently transformed into valuable chemicals, including sulfonyl esters and sulfonamides, via the sulfur(VI) fluoride exchange (SuFEx) click reaction. Preliminary mechanistic studies suggest that the transformation proceeds through intramolecular radical cyclization, SO2 insertion, sulfite anion formation, and fluorination.
Collapse
Affiliation(s)
- Da-Zhi Sun
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaojun Hu
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Fang Long
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kai-Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qing Li
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
11
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
12
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
13
|
Ma Y, Pan Q, Ou C, Cai Y, Ma X, Liu C. Aryl sulfonyl fluoride synthesis via organophotocatalytic fluorosulfonylation of diaryliodonium salts. Org Biomol Chem 2023; 21:7597-7601. [PMID: 37676649 DOI: 10.1039/d3ob01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mild and efficient synthesis of various aryl sulfonyl fluorides from diaryliodonium salts under organophotocatalysis via a radical sulfur dioxide insertion and fluorination strategy is presented. Diaryliodonium salts are used as aryl radical precursors, the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfonyl source and cheap KHF2 as a desirable fluorine source, respectively. Notably, the electronic properties of substituents on the aromatic rings in diaryliodonium salts have a significant influence on the reaction yields.
Collapse
Affiliation(s)
- Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Qijun Pan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Enantioselective Addition of Dialkyl Malonates to β-Arylethenesulfonyl Fluorides under High-Pressure Conditions. Org Lett 2023; 25:6818-6822. [PMID: 37655810 PMCID: PMC10521026 DOI: 10.1021/acs.orglett.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 09/02/2023]
Abstract
Application of high-pressure conditions enables enantioselective Michael-type addition of dialkyl malonates to β-arylethenesulfonyl fluorides. The reaction is efficiently catalyzed with 5 mol % of tertiary amino-thiourea at 9 kbar. Chiral alkanesulfonyl fluorides are formed in yields of up to 96% and enantioselectivities of up to 92%. Functionalization of the adducts via sulfur fluoride exchange (SuFEx) reaction and desulfonylative cyclization is demonstrated.
Collapse
Affiliation(s)
- Michał Kopyt
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Kwiatkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
15
|
Ou C, Cai Y, Ma Y, Zhang H, Ma X, Liu C. Aliphatic Sulfonyl Fluoride Synthesis via Decarboxylative Fluorosulfonylation of Hypervalent Iodine(III) Carboxylates. Org Lett 2023; 25:6751-6756. [PMID: 37656922 DOI: 10.1021/acs.orglett.3c02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
We disclose herein a photocatalytic decarboxylative fluorosulfonylation reaction of various hypervalent iodine(III) carboxylates in combination with 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a sulfonyl source and KHF2 as a desirable fluorine source via a radical sulfur dioxide insertion and fluorination strategy. A one-pot photocatalytic decarboxylative fluorosulfonylation reaction of various carboxylic acids mediated by PhI(OAc)2 was realized, as well. Notably, this transformation can be performed under heating conditions without the need for catalysts.
Collapse
Affiliation(s)
- Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Haozhen Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Abstract
The impact of click chemistry was recently recognized with the 2022 Nobel Prize in Chemistry. The breadth of areas where click chemistry has accelerated discovery is prodigal. In one of the most written about subjects in chemistry over recent years, this short perspective zones in on a small fragment of what we, the authors, consider are some of the most critical developments in synthetic chemistry, which have expanded access to the click chemistry toolbox. In addition, we touch upon areas within medicinal chemistry and novel approaches to drug discovery enabled by click chemistry, where we believe there is untapped potential for biological function to be found and exploited.
Collapse
Affiliation(s)
- Adam D Moorhouse
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - Joshua A Homer
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - John E Moses
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
- Lead Contact
| |
Collapse
|
17
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
18
|
Zhao X, Chen D, Zhu S, Luo J, Liao S, Zheng B, Huang S. Fluorosulfonylvinylation of Unactivated C(sp 3)-H via Electron Donor-Acceptor Photoactivation. Org Lett 2023; 25:3109-3113. [PMID: 37083288 DOI: 10.1021/acs.orglett.3c00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An electron donor-acceptor (EDA) complex photoactivation strategy for radical fluorosulfonylation is disclosed for the first time. Simply upon blue light irradiation, the FSO2 radical can be generated efficiently under catalyst-free, base-free, and additive-free conditions, which enables facile access to 6-keto alkenylsulfonyl fluorides from readily available propargyl alcohols and FSO2Cl. The 6-keto alkenylsulfonyl fluoride motif has been showcased as a versatile SuFEx hub with diverse follow-up derivatizations.
Collapse
Affiliation(s)
- Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengzhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan, Ningxia Hui Autonomous Region 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
19
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
20
|
Patel TI, Laha R, Moschitto MJ. Synthesis of Quinoline Silyloxymethylsulfones as Intermediates to Sulfonyl Derivatives. J Org Chem 2022; 87:15679-15683. [PMID: 36305839 DOI: 10.1021/acs.joc.2c02044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterocyclic sulfones, sulfonamides, and sulfonyl fluorides constitute an important structural motif in medicinal chemistry. Methods to make six-membered heteroaromatic sulfonyl compounds, however, remain challenging, and most efforts rely on commercial sulfonyl chlorides. We report herein the reaction of sodium tert-butyldimethyl silyloxymethylsulfinate with quinoline N-oxides to selectively furnish C2-substituted sulfones. The silyloxymethylsulfinate can be deprotected to then form sulfonyl fluorides, sulfonamides, and sulfones. This transformation is scalable and has broad applicability to a wide array of quinoline and isoquinoline functionality.
Collapse
Affiliation(s)
- Twinkle I Patel
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 163 Frelinghuysen Way, Piscataway, New Jersey 08854, United States
| | - Ramkrishna Laha
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 163 Frelinghuysen Way, Piscataway, New Jersey 08854, United States
| | - Matthew J Moschitto
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 163 Frelinghuysen Way, Piscataway, New Jersey 08854, United States
| |
Collapse
|
21
|
Lee SB, Park JH, Bae HY. Hydrophobic Amplification Enabled High-Turnover Phosphazene Superbase Catalysis. CHEMSUSCHEM 2022; 15:e202200634. [PMID: 35638148 DOI: 10.1002/cssc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
β-Sulfido sulfonyl fluoride and its derivatives have been gaining attention recently in the fields of medicinal chemistry and material science. The conventional method for the synthesis of functionalized alkyl sulfonyl fluorides requires several chemical transformations. Therefore, a direct establishment of such chemical structures remains challenging, and an efficient catalytic approach is highly desired. Herein a significant "on-water" hydrophobic amplification was achieved, enabling a high-turnover catalytic thia-Michael addition to produce unprecedented β-arylated-β-sulfido sulfonyl fluorides. Amounts as low as 100 ppm (0.01 mol %) of the phosphazene superbase were sufficient to successfully catalyze the reaction with excellent chemo-/site-selectivity and with optimal functional group tolerance. Several β-arylated ethene sulfonyl fluorides were converted into thia-Michael adducts up to >99 % yields. The mild conditions, high turnover, neutral pH, and scalability of the sustainable catalytic process benefit the preparation of potential pharmaceuticals (e. g., polyisoprenylated methylated protein methyl esterase inhibitors) and organic materials (e. g., electrolyte additives).
Collapse
Affiliation(s)
- Sun Bu Lee
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
22
|
Tryniszewski M, Basiak D, Barbasiewicz M. Olefination with Sulfonyl Halides and Esters: Synthesis of Unsaturated Sulfonyl Fluorides. Org Lett 2022; 24:4270-4274. [PMID: 35653711 PMCID: PMC9490844 DOI: 10.1021/acs.orglett.2c01604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Methanedisulfonyl fluoride, CH2(SO2F)2, transforms aromatic aldehydes into β-arylethenesulfonyl fluorides, useful substrates for the SuFEx "click"-type transformations. The reaction mimics mechanism of the Horner-Wadsworth-Emmons olefination, which runs via addition of the carbanion, followed by cyclization-fragmentation of the four-membered ring intermediate. In the absence of base, electron-rich aldehydes follow an alternative pathway of the Knoevenagel condensation to provide unsaturated 1,1-disulfonyl fluorides. We demonstrate also trapping of elusive ethene-1,1-disulfonyl fluoride, CH2═C(SO2F)2, with 4-(dimethylamino)pyridine (DMAP) that forms zwitterionic adduct, characterized with X-ray studies.
Collapse
Affiliation(s)
- Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dariusz Basiak
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Zhu DY, Chen Y, Zhang XJ, Yan M. Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride. Org Biomol Chem 2022; 20:4714-4718. [PMID: 35622375 DOI: 10.1039/d2ob00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride (ESF) has been developed. In the presence of different bases, N2-alkylated and C4-alkylated isoxazol-5-ones with a sulfonyl fluoride group were obtained separately with good to excellent yields. Further transformations with amines and phenol gave sulfonamides and sulfonates. The intriguing combination of isoxazol-5-ones and the sulfonyl fluoride group produces valuable products for drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Zhang L, Cheng X, Zhou Q. Electrochemical Synthesis of Sulfonyl Fluorides with Triethylamine Hydrofluoride. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demon‐stration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Frye NL, Daniliuc CG, Studer A. Radical 1-Fluorosulfonyl-2-alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202115593. [PMID: 34958162 PMCID: PMC9305502 DOI: 10.1002/anie.202115593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/12/2022]
Abstract
Sulfonyl fluorides have found widespread use in chemical biology and drug discovery. The development of synthetic methods for the introduction of the sulfonyl fluoride moiety is therefore of importance. Herein, a transition-metal-free radical 1,2-difunctionalization of unactivated alkenes via FSO2 -radical addition with subsequent vicinal alkynylation to access β-alkynyl-fluorosulfonylalkanes is presented. Alkynyl sulfonyl fluorides are introduced as highly valuable bifunctional radical trapping reagents that also serve as FSO2 -radical precursors. The β-alkynyl-fluorosulfonylalkanes obtained in these transformations can be readily diversified by using SuFEx click chemistry to obtain sulfonates and sulfonamides.
Collapse
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
26
|
Chen ZD, Zhou X, Yi JT, Diao HJ, Chen QL, Lu G, Weng J. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org Lett 2022; 24:2474-2478. [PMID: 35263111 DOI: 10.1021/acs.orglett.2c00459] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonyl fluorides are useful building blocks in a wide array of fields. Herein, we report a catalytic decarboxylative fluorosulfonylation approach for converting abundant aliphatic carboxylic acids to the corresponding sulfonyl fluorides. This transformation is enabled by simple preactivation as aldoxime esters and energy-transfer-mediated photocatalysis. This operationally simple method proceeds with high functional-group tolerance under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Long Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
27
|
Frye NL, Daniliuc CG, Studer A. Radikalische 1‐Fluorsulfonyl‐2‐alkinylierung von nicht aktivierten Alkenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| |
Collapse
|
28
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
29
|
Zhang H, Li S, Zheng HL, Zhu G, Liao S, Nie X. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SO2 radical insertion/fluorination via a photocatalytic redox strategy is developed, providing an efficient and reliable approach for the synthesis of alkylsulfonyl fluorides.
Collapse
Affiliation(s)
- Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shaojie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Han-Liang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory of Molecular Science (BNLMS), Beijing 100190, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
30
|
Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen QY, Liu C. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general and efficient approach to various aliphatic sulfonyl fluorides by the reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acids via a radical sulfur dioxide insertion and fluorination strategy was developed.
Collapse
Affiliation(s)
- Zhanhu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Song X, He Y, Wang B, Peng S, Pan X, Wei M, Liu Q, Qin HL, Tang H. Synthesis of aryl sulfonyl fluorides from aryl sulfonyl chlorides using sulfuryl fluoride (SO2F2) as fluoride provider. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Yi JT, Zhou X, Chen QL, Chen ZD, Lu G, Weng J. Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chem Commun (Camb) 2022; 58:9409-9412. [DOI: 10.1039/d2cc03221j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we report two complementary methods for direct decarboxylative fluorosulfonylation of carboxylic acids by the merging of copper catalysis with different N-centered HAT regents.
Collapse
Affiliation(s)
- Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Qi-Long Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
33
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
34
|
Pan Q, Liu Y, Pang W, Wu J, Ma X, Hu X, Guo Y, Chen QY, Liu C. Copper-catalyzed three-component reaction of arylhydrazine hydrochloride, DABSO, and NFSI for the synthesis of arenesulfonyl fluorides. Org Biomol Chem 2021; 19:8999-9003. [PMID: 34605502 DOI: 10.1039/d1ob01697k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper reports a convenient copper-catalyzed three-component conversion of arylhydrazine hydrochlorides to arenesulfonyl fluorides in good yields under mild conditions, using 1,4-diazabicyclo [2.2.2]octane bis(sulfur dioxide) (DABSO) as a sulfonyl source and N-fluorobenzenesulfonimide (NFSI) as a fluorine source based on a radical sulfur dioxide insertion and fluorination strategy. Notably, arylhydrazine hydrochloride is used as a safe precursor of aryl radicals.
Collapse
Affiliation(s)
- Qijun Pan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
35
|
Zhong T, Yi JT, Chen ZD, Zhuang QC, Li YZ, Lu G, Weng J. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem Sci 2021; 12:9359-9365. [PMID: 34349907 PMCID: PMC8278970 DOI: 10.1039/d1sc02503a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Quan-Can Zhuang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong-Zhao Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|