1
|
Ahmad I, Al-Qattan A, Iqbal MZ, Anas A, Khasawneh MA, Obaidullah AJ, Mahal A, Duan M, Al Zoubi W, Ghadi YY, Al-Zaqri N, Xia C. A systematic review on Nb 2O 5-based photocatalysts: Crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Adv Colloid Interface Sci 2024; 324:103093. [PMID: 38306848 DOI: 10.1016/j.cis.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture-38040, Faisalabad, Pakistan
| | - Ayman Al-Qattan
- Energy and Building Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | | | - Alkhouri Anas
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 15551, United Arab Emirates.
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, People's Republic of China
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Micro built-in electric field arrays created by embedding high-dispersed RuP3 quantum dots with ultra-small size on polymeric carbon nitride nanosheets for synergistically actuating photocatalytic hydrogen evolution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Lin B, Ren X, Chen Z, Xiao H, Xu B, Chong B, Yang G. Uniform-embeddable-distributed Ni 3S 2 cocatalyst inside and outside a sheet-like ZnIn 2S 4 photocatalyst for boosting photocatalytic hydrogen evolution. NANOSCALE 2022; 14:16952-16960. [PMID: 36345991 DOI: 10.1039/d2nr05207e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rational cocatalyst design is considered a significant route to boost the solar-energy conversion efficiency for photocatalytic H2 generation. However, the traditional cocatalyst-loading on the surface of a photocatalyst easily leads to scarce exposed active sites induced by the agglomeration of cocatalysts and a hindrance of the light absorption of the photocatalyst, thus significantly limiting the enhancement of the photocatalytic H2-generation performance. Herein, a new concept of uniform-embeddable-distributed cocatalysts is put forward. Consequently, uniform-embeddable-distributed cocatalysts of Ni3S2 were designed and constructed inside and outside of the nanosheet-like ZnIn2S4 photocatalyst to form a Ni3S2/ZnIn2S4 binary system (UEDNiS/ZIS). The unique uniform-embeddable-distributed Ni3S2 cocatalyst (UEDNiS) could provide abundant exposed active sites, facilitate the spatial separation and ordered transfer of charges inside and outside of ZnIn2S4 nanosheets, and reduce the hydrogen-adsorption free energy for photocatalytic H2-generation reactions. As a result, UEDNiS/ZIS exhibited a high photocatalytic H2-generation rate of 60 μmol h-1 under visible-light irradiation, almost 7.8 and 2.8 times higher than pristine ZnIn2S4 and the traditional surface-loaded Ni3S2/ZnIn2S4 (TSLNiS/ZIS), respectively. This work represents a new cocatalyst-design approach to realize high-efficiency hydrogen evolution in binary heterostructured photocatalytic systems.
Collapse
Affiliation(s)
- Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin Ren
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zihao Chen
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hang Xiao
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Baorong Xu
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ben Chong
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Cai X, Wang Y, Tang S, Mo L, Leng Z, Zang Y, Jing F, Zang S. Rhombohedral/Cubic In 2O 3 Phase Junction Hybridized with Polymeric Carbon Nitride for Photodegradation of Organic Pollutants. Int J Mol Sci 2022; 23:ijms232214293. [PMID: 36430772 PMCID: PMC9695553 DOI: 10.3390/ijms232214293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In recent studies, phase junctions constructed as photocatalysts have been found to possess great prospects for organic degradation with visible light. In this study, we designed an elaborate rhombohedral corundum/cubic In2O3 phase junction (named MIO) combined with polymeric carbon nitride (PCN) via an in situ calcination method. The performance of the MIO/PCN composites was measured by photodegradation of Rhodamine B under LED light (λ = 420 nm) irradiation. The excellent performance of MIO/PCN could be attributed to the intimate interface contact between MIO and PCN, which provides a reliable charge transmission channel, thereby improving the separation efficiency of charge carriers. Photocatalytic degradation experiments with different quenchers were also executed. The results suggest that the superoxide anion radicals (O2-) and hydroxyl radicals (·OH) played the main roles in the reaction, as opposed to the other scavengers. Moreover, the stability of the MIO/PCN composites was particularly good in the four cycling photocatalytic reactions. This work illustrates that MOF-modified materials have great potential for solving environmental pollution without creating secondary pollution.
Collapse
Affiliation(s)
- Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaning Wang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuting Tang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liuye Mo
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhe Leng
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (Z.L.); (S.Z.)
| | - Yixian Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shaohong Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316021, China
- Correspondence: (Z.L.); (S.Z.)
| |
Collapse
|
5
|
Sreedhar A, Hoai Ta QT, Noh JS. Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO 2 nanocomposite interfaces for environmental remediation applications: A review. CHEMOSPHERE 2022; 305:135478. [PMID: 35760130 DOI: 10.1016/j.chemosphere.2022.135478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, we are critically facing various environmental issues. Among these, water contamination is the foremost issue, which worsens our health and living organisms in the water. Thus, it is necessary to provide an avenue to minimize the toxic matter through the development of facile technique and harmless photocatalyst. In this review, we intended to uncover the findings associated with various 0D, 1D, and 2D nanostructures featured photocatalysts for advancements in interfacial characteristics and toxic matter degradation. In this context, we evaluated the promising mixed-dimensional 0D/2D, 1D/2D, and 2D/2D bismuth oxyhalides BiOX (X = Cl, Br, and I) integrated TiO2 nanostructure interfaces. Tunable mixed-dimensional interfaces highlighted with higher surface area, more heterojunctions, variation in the conduction and valence band potential, narrowed band gap, and built-in electric field formation between BiOX and TiO2, which exhibits remarkable toxic dye, heavy metals, and antibiotics degradation. Further, this review further examines insights into the charge carrier generation, separation, and shortened charge transfer path at reduced recombination. Considering the advantages of type-II, S-scheme, and Z-scheme charge transfer mechanisms in the BiOX/TiO2, we heightened the combination of various reactive species generation. In a word, the concept of mixed-dimensional BiOX/TiO2 heterojunction interface endows toxic matter adsorption and decomposition into useful products. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Qui Thanh Hoai Ta
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Jin-Seo Noh
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| |
Collapse
|
6
|
Su N, Zhu D, Zhang P, Fang Y, Chen Y, Fang Z, Zhou X, Li C, Dong H. 3D/2D Heterojunction Fabricated from RuS 2 Nanospheres Encapsulated in Polymeric Carbon Nitride Nanosheets for Selective Photocatalytic CO 2 Reduction to CO. Inorg Chem 2022; 61:15600-15606. [PMID: 36134910 DOI: 10.1021/acs.inorgchem.2c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micro/nanostructure control of heterostructures is still a challenge for achieving high efficiency and selectivity of photocatalytic CO2 conversion. In this work, a new three-dimensiona/two-dimensional (3D/2D) heterostructure is fabricated by encapsulating RuS2 nanospheres in the interlayer of mesoporous polymeric carbon nitride (PCN) nanosheets based on an in situ growth and polymerization strategy. The unique microstructure of the obtained 3D/2D RuS2/PCN heterojunction can effectively improve the transfer and separation efficiency of photogenerated charge carriers, reduce the mass transfer resistance of CO2 toward active sites, and provide a confined reaction space, thus propelling the photocatalytic CO2 reduction to CO with high selectivity. The CO yield over the optimal 5%-RuS2/PCN sample reaches 4.2 and 2.8 times as high as that of single PCN and RuS2 within 4 h, respectively. Furthermore, the plausible charge transfer mechanism and CO2 reduction path are revealed by time-dependent in situ Fourier transform infrared (FT-IR) spectra combined with photophysical, electrochemical, and photoelectrochemical techniques and density functional theory (DFT) calculations. This work develops the microstructural engineering design strategy of PCN-based heterojunctions for selective photocatalytic CO2 fuel conversion.
Collapse
Affiliation(s)
- Nan Su
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Daqiang Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Pingfan Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuhai Fang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuxiang Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiangtong Zhou
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Xiao H, Wei T, Ren X, Lin B, Yang G. PtS quantum dots/Nb 2O 5 nanosheets with accelerated charge transfer for boosting photocatalytic H 2 production. NANOSCALE 2022; 14:12403-12408. [PMID: 35971973 DOI: 10.1039/d2nr03112d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid recombination rate of charges limits the improvement of photocatalytic hydrogen evolution performance related to semiconductor photocatalysts. An effective strategy to accelerate charge separation and transfer is the design and construction of new high-efficiency cocatalysts on photocatalysts. Herein, a system of PtS quantum dots/Nb2O5 nanosheets (PtS/Nb2O5) was constructed via the in situ vapor phase (ISVP) synthesis process. The conclusions from ultrafast femtosecond-resolved TA spectroscopy indicated that the lifetime of the photogenerated charges of PtS/Nb2O5 (6073.75 ps) was shortened markedly in contrast to that of Nb2O5 (6634.05 ps), manifesting the facilitated separation and transfer of photogenerated charges caused by the quantum-dot-structured PtS cocatalyst. The enhanced charge separation and transfer capacity contributes to an excellent H2 production rate of 182.5 μmol h-1 for PtS/Nb2O5, which is up to 3.4 and 12.2 times that of Pt/Nb2O5 and Nb2O5, respectively. This work brings up new avenues for constructing unique and effective photocatalysts via the cocatalyst design.
Collapse
Affiliation(s)
- Hang Xiao
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Tian Wei
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xin Ren
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
8
|
Lin B, Xia M, Xu B, Chong B, Chen Z, Yang G. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Ahmad I, Shukrullah S, Naz M, Ahmad M, Ahmed E, Liu Y, Hussain A, Iqbal S, Ullah S. Recent advances and challenges in 2D/2D heterojunction photocatalysts for solar fuels applications. Adv Colloid Interface Sci 2022; 304:102661. [PMID: 35462267 DOI: 10.1016/j.cis.2022.102661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
Although photocatalytic technology has emerged as an effective means of alleviating the projected future fuel crisis by converting sunlight directly into chemical energy, no visible-light-driven, low-cost, and highly stable photocatalyst has been developed to date. Due to considerably higher interfacial contact with numerous reactive sites, effective charge transmission and separation ability, and strong redox potentials, the focus has now shifted to 2D/2D heterojunction systems, which have exhibited effective photocatalytic performance. The fundamentals of 2D/2D photocatalysis for different applications and the classification of 2D/2D materials are first explained in this paper, followed by strategies to improve the photocatalytic performance of various 2D/2D heterojunction systems. Following that, current breakthroughs in 2D/2D metal-based and metal-free heterojunction photocatalysts, as well as their applications for H2 evolution via water splitting, CO2 reduction, and N2 fixation, are discussed. Finally, a brief overview of current constraints and predicted results for 2D/2D heterojunction systems is also presented. This paper lays out a strategy for developing efficient 2D/2D heterojunction photocatalysts and sophisticated technology for solar fuel applications in order to address the energy issue.
Collapse
|
10
|
Chen Z, Chong B, Wells N, Yang G, Wang L. Constructing a coplanar heterojunction through enhanced π-π conjugation in g-C3N4 for efficient solar-driven water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Lin B, Ma B, Chen J, Zhou Y, Zhou J, Yan X, Xue C, Luo X, Liu Q, Wang J, Bian R, Yang G, Liu F. Sea-urchin-like ReS2 nanosheets with charge edge-collection effect as a novel cocatalyst for high-efficiency photocatalytic H2 evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Ren X, Shi J, Duan R, Di J, Xue C, Luo X, Liu Q, Xia M, Lin B, Tang W. Construction of high-efficiency CoS@Nb2O5 heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|