1
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Luo YX, Huang J, Wu G, Tang XY, Qu JP. Visible-light-mediated deoxygenative transformation of 1,2-dicarbonyl compounds through energy transfer process. Nat Commun 2024; 15:9240. [PMID: 39455565 PMCID: PMC11511947 DOI: 10.1038/s41467-024-53635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Through the energy transfer process, mild transformations can be achieved that are often difficult to realize under thermodynamic conditions. Herein, a visible-light-driven deoxygenative coupling of 1,2-dicarbonyl compounds for C-O, C-S, and C-N bonds construction is developed via triplet state 1,2-dicarbonyls, affording a wide range of α-functionalized ketones/esters under transition-metal and external photocatalyst free conditions. The usefulness of this method is demonstrated by gram-scale synthesis, late-stage functionalization of various carboxylic acid drugs, and the synthesis of natural products and drug molecules.
Collapse
Affiliation(s)
- Yun-Xuan Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Jie Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Xiang-Ying Tang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China.
| | - Jin-Ping Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Milton JP, Milanowski A, Andersson M, Gryko D. Photochemical cyclopropanation in aqueous micellar media - experimental and theoretical studies. Chem Commun (Camb) 2024; 60:4483-4486. [PMID: 38564316 DOI: 10.1039/d4cc00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While in nature, reactions occur in water-based confined compartments, for a long time, water has been often regarded as an unsuitable medium for organic reactions. We have, however, found that photochemical cyclopropanation of styrenes with diazo compounds or their precursors can be performed in micellar systems. COSMO-RS studies revealed that the reactivity correlates with the predicted critical micelle concentration (CMC), with higher CMC values delivering higher yields.
Collapse
Affiliation(s)
- Joseph P Milton
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Adam Milanowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Martin Andersson
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
5
|
Junaid M, Happy S, Yadagiri D. Light-induced arylation (alkylation) of N-sulfonylhydrazones with boronic acids. Chem Commun (Camb) 2024; 60:2796-2799. [PMID: 38362736 DOI: 10.1039/d4cc00161c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Di- and triarylmethanes are an important class of compounds in many fields. Here, we report an efficient light-induced arylation (alkylation) for the synthesis of diarylmethanes, bis(diarylmethyl)benzenes, arylalkylmethanes, and triarylmethanes from readily accessible N-sulfonylhydrazones and aryl/alkylboronic acids with the aid of Cs2CO3. In the presence of light, the synthesis of diarylmethanes was also achieved from aldehydes in a one-pot manner via a three-component approach in good yields. Furthermore, we have demonstrated the synthetic utility by synthesizing organoboron compounds and 2°-alcohol.
Collapse
Affiliation(s)
- Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
6
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
7
|
Hussain Y, Empel C, Koenigs RM, Chauhan P. Carbene Formation or Reduction of the Diazo Functional Group? An Unexpected Solvent-Dependent Reactivity of Cyclic Diazo Imides. Angew Chem Int Ed Engl 2023; 62:e202309184. [PMID: 37506274 DOI: 10.1002/anie.202309184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
8
|
Wei Y, Sun S, Xu J. Direct and safe one-pot synthesis of functionalized dimethyl 1-aryl-1,9a-dihydropyrido[2,1-c][1,4]thiazine-1-phosphonates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Guo W, Zhou Y, Xie H, Yue X, Jiang F, Huang H, Han Z, Sun J. Visible-light-induced organocatalytic enantioselective N-H insertion of α-diazoesters enabled by indirect free carbene capture. Chem Sci 2023; 14:843-848. [PMID: 36755716 PMCID: PMC9890670 DOI: 10.1039/d2sc05149d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
While asymmetric insertion of metal carbenes into H-X (X = C, N, O, etc.) bonds has been well-established, asymmetric control over free carbenes is challenging due to the presence of strong background reactions and lack of any anchor for a catalyst interaction. Here we have achieved the first photo-induced metal-free asymmetric H-X bond insertion of this type. With visible light used as a promoter and a chiral phosphoric acid used as a catalyst, α-diazoesters and aryl amines underwent smooth N-H bond insertion to form enantioenriched α-aminoesters with high efficiency and good enantioselectivity under mild conditions. Key to the success was the use of DMSO as an additive, which served to rapidly capture the highly reactive free carbene intermediate to form a domesticated sulfoxonium ylide.
Collapse
Affiliation(s)
- Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongling Xie
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hai Huang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zhengyu Han
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China .,Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR China.,Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
| |
Collapse
|
10
|
Wang H, Wang S, George V, Llorente G, König B. Photo‐Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angew Chem Int Ed Engl 2022; 61:e202211578. [PMID: 36226924 PMCID: PMC10099875 DOI: 10.1002/anie.202211578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/12/2022]
Abstract
We describe a photo-induced reaction for the in situ generation of highly reactive alkyl diazo species from carbonyl precursors via photo-excitation of N-tosylhydrazone anions. The diazo intermediates undergo efficient C-H insertion of aldehydes, leading to the productive synthesis of aldehydes and ketones. The method is applicable to the iterative synthesis of densely functionalized carbonyl compounds through sequential trapping of the diazo species with various aldehydes. The reaction proceeds without the need of any catalyst by light irradiation and features high functional group tolerance. More than 70 examples, some performed on a gram-scale, demonstrate the broad applicability of this reaction sequence in synthesis.
Collapse
Affiliation(s)
- Hua Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
- Department of Chemistry, School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Shun Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Vincent George
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Galder Llorente
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| |
Collapse
|
11
|
Wang Y, Jia P, Hao Y, Li J, Lai R, Guo L, Wu Y. Blue light induced [2,3]-sigmatropic rearrangement reactions of tosylhydrazones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
13
|
Singhal R, Choudhary SP, Malik B, Pilania M. Emerging Trends in
N
‐Tosylhydrazone Mediated Transition‐Metal‐Free Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Satya Prakash Choudhary
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Babita Malik
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Meenakshi Pilania
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| |
Collapse
|
14
|
Jiazhuang W, Liguo T, Shaoqi X, Tiebo X, Yubo J. Rh-Catalyzed gem-Difluoroallylation of N-Tosylhydrazones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Cai B, Xuan J. Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|