1
|
Jin CA, Liu H, Xie BW, Liang RX, Jia YX. Visible-light-induced dearomative 1,4-carbamoylpyridinylation of nonactivated naphthalenes. Org Biomol Chem 2025. [PMID: 40391439 DOI: 10.1039/d5ob00550g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
A visible-light-induced dearomative 1,4-carbamoylpyridinylation of nonactivated naphthalenes is described. The protocol provides rapid access to a series of pyridinylated spiro 1,2-dihydronaphthalenes in moderate yields by using naphthyl-substituted oxamic acids and 4-cyanopyridines as substrates through radical-radical cross-coupling followed by base-mediated alkene tautomerization. In addition, this method enabled late-stage functionalization of several drug derivatives, demonstrating the practical utility of this reaction.
Collapse
Affiliation(s)
- Cheng-An Jin
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Hao Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bo-Wen Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Singh RP, Gout D, Mao JX, Kroll P, Lovely CJ. Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B-Some Trials and Tribulations. Molecules 2025; 30:1143. [PMID: 40076366 PMCID: PMC11902021 DOI: 10.3390/molecules30051143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Spirocalcaridines A and B are among the most challenging members of the marine invertebrate-derived Leucetta alkaloids. Approaches to the construction and elaboration of the highly compact spirocyclic core are described. The synthesis of tricyclic guanidine via tandem oxidative amination dearomatizing spirocyclization (TOADS) using hypervalent iodine set the stage for total synthesis via the migration of the C4/C8 double bond to the C4/C5 position, followed by oxidation. The undesired but not surprising propensity of the spirocyclic cyclohexadienone to undergo rearrangement to the phenol hindered the desired olefin migration. Furthermore, initial efforts to install the oxidation sequentially, first at C5 and then at C4 in the complete carbon skeleton, were fraught with unforeseen challenges and unusual outcomes. In addition, the scope and limitations of hypervalent iodine-mediated tandem oxidative dearomatizing spirocyclization on various substrates were explored. Urethanes and thiourethanes underwent spirocyclization with an excellent yield, whereas the reaction with allylic substrates and species lacking the p-methoxy substituent did not proceed. Attempts to prepare other guanidine precursors are briefly discussed.
Collapse
Affiliation(s)
- Ravi P. Singh
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76016, USA (J.X.M.); (P.K.); (C.J.L.)
| | - Delphine Gout
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76016, USA (J.X.M.); (P.K.); (C.J.L.)
| | - James X. Mao
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76016, USA (J.X.M.); (P.K.); (C.J.L.)
- High Performance Research Computing (HPRC), Texas A&M University, College Station, TX 77843, USA
| | - Peter Kroll
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76016, USA (J.X.M.); (P.K.); (C.J.L.)
| | - Carl J. Lovely
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76016, USA (J.X.M.); (P.K.); (C.J.L.)
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Liu G, Ma D, Zhang J, Yang F, Gao Y, Su W. CO 2-promoted photocatalytic aryl migration from nitrogen to carbon for switchable transformation of N-arylpropiolamides. Nat Commun 2024; 15:10153. [PMID: 39578418 PMCID: PMC11584665 DOI: 10.1038/s41467-024-54239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Photocatalytic N-to-C aryl migration allows for quick construction of highly useful amide derivatives from readily available compounds. By developing the reactions of sodium sulfinates with the N-aryl-propiolamides, we herein demonstrate that the CO2-promoted visible-light-induced method enables a large variety of aryl groups on nitrogen atoms of the N-arylamides to undergo efficient aryl migration from N atom to C atom to synthesize tetra- and tri-substituted alkenyl amides selectively. 1,4-N-to-C aryl migration is a key step in this transformation which is achieved through photocatalytic radical-polar crossover pathway. The protocol exhibits the remarkably tolerant of the electronic properties of the migrating aryl substituent, as both electron-rich and -poor arenes are compatible with the migration process. As a result, this protocol features with a broad substrate scope, as demonstrated by more than 90 examples including complex bioactive compounds. Notably, abundant, nontoxic and low-cost CO2 acted as an essential and irreplaceable additive to enable the tetra- and tri-substituted alkenyl amides to be synthesized with excellent selectivity.
Collapse
Affiliation(s)
- Ge Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
| | - Jianchen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanyuanhang Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Li WT, Zhang ZX, Huang J, Jiang HM, Luo ZW, Li JH, Ouyang XH. Photochemical Divergent Ring-Closing Metathesis of 1,7-Enynes: Efficient Synthesis of Spirocyclic Quinolin-2-ones. Org Lett 2024; 26:6664-6669. [PMID: 39078505 DOI: 10.1021/acs.orglett.4c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A photocatalytic method for the ring-closing 1,7-enyne metathesis using the α-amino radical as an alkene deconstruction auxiliary is present. Preliminary mechanistic studies suggest that intramolecular 1,5-hydrogen atom transfer is the key to the generation and β-scission of the α-amino radical, while the dearomatization of arenes and ring opening of cyclopropanes are the key to construct spirocyclic quinolin-2-ones. This approach highlights the potential of ring-closing 1,7-enyne metathesis, providing a green, efficient, and step-economical way for the synthesis of spirocyclic quinolin-2-ones.
Collapse
Affiliation(s)
- Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jing Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhen-Wei Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
5
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Wang YT, Zhang M, Liu ZX, Wu YX, Yan Q, Liu CL, Li JS, Li ZW, Liu HW, Li WS. Visible-Light-Promoted Radical Cascade Cyclization of 2-Vinyl Benzimidazoles: Access to Benzo[4,5]imidazo[1,2- b]isoquinolin- 11(6 H)-ones. J Org Chem 2024. [PMID: 38738957 DOI: 10.1021/acs.joc.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A visible-light-enabled photoredox radical cascade cyclization of 2-vinyl benzimidazole derivatives is developed. This chemistry is applicable to a wide range of N-aroyl 2-vinyl benzimidazoles as acceptors, and halo compounds, including alkyl halides, acyl chlorides and sulfonyl chlorides, as radical precursors. The Langlois reagent also serves as an effective partner in this photocatalytic oxidative cascade process. This protocol provides a robust alternative for rendering highly functionalized benzo[4,5]imidazo[1,2-b]isoquinolin-11(6H)-ones.
Collapse
Affiliation(s)
- Yao-Tian Wang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mai Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Xing Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yu-Xin Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qian Yan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Cheng-Liang Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wen-Sheng Li
- College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Recent Advances in the Synthesis of Indolines via Dearomative Annulation of
N
‐acylindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|