1
|
Zhu WJ, Yu X, Liu HY, Liu Y, Zhao JB, Zhang PF, Xia CC, Li FR. Synthesis of ( E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2 H)-ones from ( E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oximes and iodobenzenes via a palladium-catalyzed dearomative arylation/oxidation reaction. Org Biomol Chem 2023; 21:6307-6311. [PMID: 37492010 DOI: 10.1039/d3ob00772c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A new method has been successfully developed that offers a facile and reliable approach for synthesizing (E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2H)-one, providing 28 compounds. This optimized process enables efficient preparation of a wide range of compounds using readily available (E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oxime and iodobenzene, and provides alternative ideas for the structural modification of benzofuran ketones.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Xiao Yu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Hong-Yan Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Yi Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Jin-Bo Zhao
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Peng-Fei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng-Cai Xia
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Fu-Rong Li
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| |
Collapse
|
2
|
Cen N, Wang H, Zhou Y, Gong R, Sui D, Chen W. Catalyst-free electrochemical trifluoromethylation of coumarins using CF 3SO 2NHNHBoc as the CF 3 source. Org Biomol Chem 2023; 21:1883-1887. [PMID: 36786673 DOI: 10.1039/d2ob01925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Nannan Cen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Han Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - YiCheng Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dandan Sui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
4
|
Ma N, Ru Y, Weng M, Chen L, Chen W, Dai Q. Synergistic mechanism of supported Mn-Ce oxide in catalytic ozonation of nitrofurazone wastewater. CHEMOSPHERE 2022; 308:136192. [PMID: 36041529 DOI: 10.1016/j.chemosphere.2022.136192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, the catalytic materials of MnOx/γ-Al2O3, CeO2/γ-Al2O3, and MnxCe1-xO2/γ-Al2O3 for catalytic ozonation were synthesized. The catalysts were used in heterogeneous catalytic ozonation of the wastewater containing ntrofurazone (NFZ). The effects of the catalytic ozonation operational factors were systematically evaluated in terms of ozone dosing, catalyst dosing, initial NFZ concentration, and pH. The results showed that the catalytic activity of the MnxCe1-xO2/γ-Al2O3 was higher than that of the MnOx/γ-Al2O3 and CeO2/γ-Al2O3. The kinetics analysis revealed that bimetallic loading has a synergistic effect and the mechanism of this effect was investigated in the catalytic ozonation system. The catalysts were characterized by FESEM, EDS, XRD, XPS, IR, and BET. The characteristics of the catalysts revealed that Mn could alter the oxide species on the metal surface and interfere with the formation of CeO2 crystals, which led to smaller grains, enhanced adsorption oxygen, and greater specific surface area. The MnxCe1-xO2/γ-Al2O3 crystals could form a solid solution, which helps higher catalytic activity. This study adds to the understanding of the synergistic mechanism of the loaded Ce-Mn oxide catalysts in the heterogeneous catalytic ozonation system and provides a feasible method for degrading pharmaceutical wastewater.
Collapse
Affiliation(s)
- Nengwei Ma
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yifan Ru
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mili Weng
- College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Lu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
5
|
Difluorocarbene-derived rapid late-stage trifluoromethylation of 5-iodotriazoles for the synthesis of 18F-labeled radiotracers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Qian WF, Zhong B, He JY, Zhu C, Xu H. Sustainable Electrochemical C(sp3−H Oxygenation Using Water as the Oxygen Source. Bioorg Med Chem 2022; 72:116965. [DOI: 10.1016/j.bmc.2022.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
|
7
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|