1
|
Nakazono T, Mitsuda R, Hashimoto K, Wada T, Tamiaki H, Yamada Y. The Catalytic Mechanism of a Highly Active Cobalt Chlorin Complex for Photocatalytic Water Oxidation. Inorg Chem 2024; 63:24041-24048. [PMID: 39630119 DOI: 10.1021/acs.inorgchem.4c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Highly active catalysts for electrocatalytic and photocatalytic water oxidation are strongly demanded to realize artificial photosynthesis. A cobalt complex with a chlorin derivative ligand (CoII(Ch)) exhibited high activity for electrocatalytic water oxidation with an overpotential of 0.45 V at pH 9.0. Spectroelectrochemistry (UV-vis) unveiled the formation of two intermediates by successive one-electron oxidations. Also, the Pourbaix diagram depicted by the pH dependence of redox potentials indicated that the water oxidation proceeded after the oxidation of both the central cobalt ion and chlorin ligand with proton-coupled electron transfer (PCET). Then, the photocatalytic activity of CoII(Ch) was examined for water oxidation using [RuII(bpy)3]2+ (bpy: 2,2'-bipyridine) and S2O82- as a photosensitizer and a sacrificial electron acceptor, respectively. The turnover number, turnover frequency, and oxygen yield reached as high as 980, 5.2 s-1, and 98%, respectively, under optimized conditions. The O2-evolution rates increased in proportion to the square of the catalyst concentration in the reaction solution, suggesting that the formation of the O-O bond regarded as the rate-determining step of water oxidation proceeded by the interaction of two metal centers (I2M) mechanism in which two molecules of high-valent metal oxo or oxyl radical species react with each other.
Collapse
Affiliation(s)
- Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Ryo Mitsuda
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Yamada
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
2
|
Li YY, Liao RZ. Exploring the Cooperation of the Redox Non-Innocent Ligand and Di-Cobalt Center for the Water Oxidation Reaction Catalyzed by a Binuclear Complex. CHEMSUSCHEM 2024; 17:e202400123. [PMID: 38664234 DOI: 10.1002/cssc.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Water oxidation is a crucial reaction in the artificial photosynthesis system. In the present work, density functional calculations were employed to decipher the mechanism of water oxidation catalyzed by a binuclear cobalt complex, which was disclosed to be a homogeneous water oxidation catalyst in pH=7 phosphate buffer. The calculations showed that the catalytic cycle starts from the CoIII,III-OH2 species. Then, a proton-coupled electron transfer followed by a one-electron transfer process leads to the generation of the formal CoIV,IV-OH intermediate. The subsequent PCET produces the active species, namely the formal CoIV,V=O intermediate (4). The oxidation processes mainly occur on the ligand moiety, including the coordinated water moiety, implying a redox non-innocent behavior. Two cobalt centers keep their oxidation states and provide one catalytic center for water activation during the oxidation process. 4 triggers the O-O bond formation via the water nucleophilic attack pathway, in which the phosphate buffer ion functions as the proton acceptor. The O-O bond formation is the rate-limiting step with a calculated total barrier of 17.7 kcal/mol. The last electron oxidation process coupled with an intramolecular electron transfer results in the generation of O2.
Collapse
Affiliation(s)
- Ying-Ying Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Li YY, Wang XY, Li HJ, Chen JY, Kou YH, Li X, Wang Y. Theoretical study on the mechanism of water oxidation catalyzed by a mononuclear copper complex: important roles of a redox non-innocent ligand and HPO 4 2- anion. RSC Adv 2023; 13:8352-8359. [PMID: 36926005 PMCID: PMC10011972 DOI: 10.1039/d3ra00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
The water oxidation reaction is the bottleneck problem of the artificial photosynthetic system. In this work, the mechanism of water oxidation catalyzed by a mononuclear copper complex in alkaline conditions was studied by density functional calculations. Firstly, a water molecule coordinating with the copper center of the complex (Cuii, 1) generates Cuii-H2O (2). 2 undergoes two proton-coupled electron transfer processes to produce intermediate (4). The oxidation process occurs mainly on the ligand moiety, and 4 (˙L-Cuii-O˙) can be described as a Cuii center interacting with a ligand radical antiferromagnetically and an oxyl radical ferromagnetically. 4 is the active species that can trigger O-O bond formation via the water nucleophilic attack mechanism. This process occurs in a step-wise manner. The attacking water transfers one of the protons to the HPO4 2- coupled with an electron transfer to the ligand radical, which generates a transient OH˙ interacting with the oxyl radical and H2PO4 -. Then the O-O bond is formed through the direct coupling of the oxo radical and the OH radical. The triplet di-oxygen could be released after two oxidation processes. According to the Gibbs free energy diagram, the O-O bond formation was suggested to be the rate-limiting step with a calculated total barrier of 19.5 kcal mol-1. More importantly, the copper complex catalyzing water oxidation with the help of a redox non-innocent ligand and HPO4 2- was emphasized.
Collapse
Affiliation(s)
- Ying-Ying Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Xiao-Yan Wang
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Hui-Ji Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yao-Hua Kou
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| | - Yaping Wang
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University Zhengzhou 450044 China
| |
Collapse
|
4
|
Guan J, Guo Z, Li X, Tang H. Theoretical Understanding of Reactions of Rhenium and Ruthenium Tris(thiolate) Complexes with Unsaturated Hydrocarbons: Noninnocent Nature of the Ligand, Mechanism, and Origin of Differential Reactivity. Inorg Chem 2023; 62:2548-2560. [PMID: 36719396 DOI: 10.1021/acs.inorgchem.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In retrospect to the complexity induced by the noninnocent ligands in identifying the transition metal's oxidation state and correlating the ligand's noninnocence with reactivity, the reactions of alkene/alkyne addition to rhenium/ruthenium tris(thiolate) complexes are particularly good cases for shedding light on the chemistry of the dppbt ligand, including its noninnocent nature, ligand-centered mechanism, and origin of differential reactivity. Density functional theory (DFT) combined with the high-level ab initio calculations performed herein demonstrates that, upon alkene/alkyne addition, the orbital symmetry properly regulates the reaction to form ligand-centered cis-interligand dithioethers as the most favorable pathway. The neutral and cationic Re and Ru dithioethers are revealed via DFT calculations to be in a low-spin ground state; on the contrary, high-level ab initio methods confirm that the dicationic Re-dithioethers exhibit obvious multireference character with antiferromagnetic coupling between Re-dyz and S1-py. The metal-stabilized thiyl radicals play a pivotal role in delivering the reactivity of [RuL3]+ and [ReL3]+/2+ toward alkene/alkyne rather than [ReL3], where [RuL3]+ and [ReL3]+/2+ present significant radical characters on ligand S2, yet neutral [ReL3] has little such feature, from which differential reactivity arises. Faster styrene addition to Ru tris(thiolate) in contrast to Re tris(thiolate) has been properly interpreted using DFT calculations with major products assigned. The deeper understanding gained in this work would illuminate further experimental exploration in adding alkene/alkyne to other metal-stabilized thiyl radicals.
Collapse
Affiliation(s)
- Jia Guan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zeyi Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xuelian Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Hao Tang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
5
|
Ground state singlet-to-triplet conversion of copper corrole radical by β-benzo-fusion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Peng Y, Li M, Jia X, Su J, Zhao X, Zhang S, Zhang H, Zhou X, Chen J, Huang Y, Wågberg T, Hu G. Cu Nanoparticle-Decorated Boron-Carbon-Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28956-28964. [PMID: 35704422 DOI: 10.1021/acsami.2c06729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, irregular Cu nanoparticle-decorated boron-carbon-nitrogen (Cu-BCN) nanosheets were successfully synthesized. A Cu-BCN dispersion was deposited on a bare glassy carbon electrode (GCE) to prepare an electrochemical sensor (Cu-BCN/GCE) for the detection of chloramphenicol (CAP) in the environment. Cu-BCN was characterized using high-resolution scanning transmission electron microscopy (HRSTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The performance of the Cu-BCN/GCE was studied using electrochemical impedance spectroscopy (EIS), and its advantages were proven by electrode comparison. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions, including the amount of Cu-BCN deposited, enrichment potential, deposition time, and pH of the electrolyte. A linear relationship between the CAP concentration and current response was obtained under the optimized experimental conditions, with a wide linear range and a limit of detection (LOD) of 2.41 nmol/L. Cu-BCN/GCE exhibited high stability, reproducibility, and repeatability. In the presence of various organic and inorganic species, the influence of the Cu-BCN-based sensor on the current response of CAP was less than 5%. Notably, the prepared sensor exhibited excellent performance in real-water samples, with satisfactory recovery.
Collapse
Affiliation(s)
- Yan Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Meng Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jianru Su
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xue Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yimin Huang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| |
Collapse
|
7
|
Lin J, Chen X, Wang N, Liu S, Ruan Z, Chen Y. Electrochemical water oxidation by a copper complex with an N4-donor ligand under neutral conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01183a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear copper(ii) complex [Cu(H2L)](NO3)2 with an N4-donor redox-active ligand is found to be an efficient homogeneous catalyst for electrochemical water oxidation with the assistance of ligand oxidation.
Collapse
Affiliation(s)
- Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| | - Xin Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| | - Nini Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| | - Yanmei Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|