1
|
El Ghazali A, Aboulouard A, Gultekin B, Tounsi A, El Idrissi M. Theoretical investigation of novel electron donors for bulk heterojunction solar cells with potential photovoltaic characteristics. J Mol Graph Model 2023; 125:108622. [PMID: 37690428 DOI: 10.1016/j.jmgm.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Engineering electronic organic donor materials are one of the most critical steps in producing bulk-heterojunction solar cells (BHJ) with good photovoltaic properties. Compared to standard donor materials, electron donors derived from thiophene have made significant progress as they can be better suited for optoelectronics and are cheaper and more stable. Therefore, the use of new thiophene derivatives (M1-M4) as donor molecules in BHJs has been the subject of this extensive theoretical analysis. Density functional theory (DFT) and time-dependent DFT (TD-DFT) computations have been used to investigate the boundary molecular orbital (FMO) analysis, the density of states analysis, electron and hole reorganization energy, molecular electrostatic potential, global reactivity parameters, and photovoltaic properties. The effects of end-donor modifications on the photovoltaic and electronic characteristics of the new molecules (M1-M4) are investigated. According to the results, the molecules have good optical properties, a small band gap, a perfect open-circuit voltage, and a good alignment energy level between the designated donor molecules and the acceptor phenyl-C61-butyric acid methyl ester (PCBM). These results suggest that further research in this area could enhance the efficacy of organic solar cells.
Collapse
Affiliation(s)
- Ahlam El Ghazali
- ERCAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abdelkhalk Aboulouard
- Department of Physics, Sultan Moulay Slimane University, Beni-Mellal, Morocco; Department of Engineering Sciences, Izmir Katip Celebi University, Izmir, Turkey; Solar Energy Institute, Ege University, TR-35100, Izmir, Turkey; Graphene Application and Research Center, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burak Gultekin
- Solar Energy Institute, Ege University, TR-35100, Izmir, Turkey
| | - Abdessamad Tounsi
- ERCAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mohammed El Idrissi
- TCPAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| |
Collapse
|
2
|
Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. 13% Single-Component Organic Solar Cells based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300629. [PMID: 36814317 DOI: 10.1002/adma.202300629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Indexed: 05/05/2023]
Abstract
Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Lai W, Karuthedath S, Xiao C, Meng L, Laquai F, Li W, Li Y. Alkyl-thiophene-alkyl linkers to construct double-cable conjugated polymers for single-component organic solar cells. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Liu B, Liang S, Karuthedath S, He Y, Wang J, Tan WL, Li H, Xu Y, Laquai F, Brabec CJ, McNeill CR, Xiao C, Tang Z, Hou J, Yang F, Li W. Double-Cable Conjugated Polymers Based on Simple Non-Fused Electron Acceptors for Single-Component Organic Solar Cells. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Baiqiao Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Fan Yang
- College of Chemistry, Chemical
Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan250014, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
5
|
Wang R, Xia D, Jiang X, Zhao C, Zhou S, Fang H, Wang J, Tang Z, Xiao C, Li W. N-Annulated Perylene Bisimide-Based Double-Cable Polymers with Open-Circuit Voltage Approaching 1.20 V in Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47952-47960. [PMID: 36222398 DOI: 10.1021/acsami.2c10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we have introduced single/double-sided N-annulated perylene bisimide (PBI) with deep energy levels into double-cable polymers with poly[1-(5-(4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,7-bis(2-ethylhexyl)-3-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione] (PBDB-T-Cl) as a donor backbone, marking as s-PPNR and as-PPNR, according to the molecular symmetry. Both double-cable polymers displayed a high open-circuit voltage approaching 1.20 V in light of high energy level discrepancy between electron-donating and electron-withdrawing parts, which is the highest open-circuit voltage among double-cable-based single-component organic solar cell (SCOSC) devices. Additionally, the asymmetric polymer displayed improved absorption spectra, thereby promoting crystallization and phase separation. Consequently, the as-PPNR-based SCOSCs achieved a power conversion efficiency of 5.05% along with a higher short-circuit current density and fill factor than their s-PPNR-based counterparts. In this work, we have successfully incorporated N-annulated PBI into double-cable polymers and revealed the important effects on structural symmetry and phase separation of double-cable polymers for higher SCOSC performance.
Collapse
Affiliation(s)
- Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongdong Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Shengxi Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Zhu XM, Bao SN, Yang H, Fan HY, Fan CL, Li XX, Hu KW, Cao HY, Cui CH, Li YF. Nonfused-Core-Small-Molecule-Acceptor-Based Polymer Acceptors for All-Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Hu Z, Xiao C, Tan WL, Liu B, Liang S, Jiang X, McNeil CR, Li W. Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhijie Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China
| | - Christopher R. McNeil
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Liang S, Wang J, Ouyang Y, Tan WL, McNeill CR, Chen Q, Tang Z, Li W. Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Kwon NY, Park SH, Cho S, Lee DW, Harit AK, Woo HY, Cho MJ, Choi DH. Polymer solar cells made with photocrosslinkable conjugated donor–acceptor block copolymers: improvement in the thermal stability and morphology with a single-component active layer. Polym Chem 2022. [DOI: 10.1039/d2py00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New photocrosslinkable conjugated donor–acceptor block copolymer bearing oxetane side chains is synthesized by one-pot polymerization to improve the thermal and morphological properties.
Collapse
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seunguk Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Won Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|