1
|
Gan Q, Zhou W, Zhang X, Lin Y, Huang S, Lu GP. Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts. CHEMSUSCHEM 2024; 17:e202400644. [PMID: 38923356 DOI: 10.1002/cssc.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
Collapse
Affiliation(s)
- Quan Gan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weihao Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xueping Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yamei Lin
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
| | - Shenlin Huang
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Elahimehr Z, Nemati F, Rangraz Y. N/Se co-doped porous carbon catalyst derived from a deep eutectic solvent and chitosan as green precursors: Investigation of catalytic activity for metal-free oxidation of alcohols. Int J Biol Macromol 2024; 273:133007. [PMID: 38857729 DOI: 10.1016/j.ijbiomac.2024.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g-1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.
Collapse
Affiliation(s)
| | | | - Yalda Rangraz
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
3
|
Vinod N, Dutta S. Production of Alkyl Levulinates from Carbohydrate-Derived Chemical Intermediates Using Phosphotungstic Acid Supported on Humin-Derived Activated Carbon (PTA/HAC) as a Recyclable Heterogeneous Acid Catalyst. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
This work reports a straightforward and high-yielding synthesis of alkyl levulinates (ALs), a class of promising biofuel, renewable solvent, and chemical feedstock of renewable origin. ALs were prepared by the acid-catalyzed esterification of levulinic acid (LA) and by the alcoholysis of carbohydrate-derived chemical platforms, such as furfuryl alcohol (FAL) and α-angelica lactone (α-AGL). Phosphotungstic acid (PTA) was chosen as the solid acid catalyst for the transformation, which was heterogenized on humin-derived activated carbon (HAC) for superior recyclability. Using HAC as catalyst support expands the scope of valorizing humin, a complex furanic resin produced inevitably as a side product (often considered waste) during the acid-catalyzed hydrolysis/dehydration of sugars and polymeric carbohydrates. Under optimized conditions (150 °C, 7 h, 25 wt.% of 20%PTA/HAC-600 catalyst), ethyl levulinate (EL) was obtained in an 85% isolated yield starting from FAL. Using the general synthetic protocol, EL was isolated in 88% and 84% yields from LA and α-AGL, respectively. The 20%PTA/HAC-600 catalyst was successfully recovered from the reaction mixture and recycled for five cycles. A marginal loss in the yield of ALs was observed in consecutive catalytic cycles due to partial leaching of PTA from the HAC support.
Collapse
Affiliation(s)
- Nivedha Vinod
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Mangaluru 575025, Karnataka, India
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Mangaluru 575025, Karnataka, India
| |
Collapse
|
4
|
Zhang X, Zhang Q, Reng J, Lin Y, Tang Y, Liu G, Wang P, Lu GP. N, S Co-Coordinated Zinc Single-Atom Catalysts for N-Alkylation of Aromatic Amines with Alcohols: The Role of S-Doping in the Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:445. [PMID: 36770405 PMCID: PMC9919690 DOI: 10.3390/nano13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
S-doping emerged as a promising approach to further improve the catalytic performance of carbon-based materials for organic synthesis. Herein, a facile and gram-scale strategy was developed using zeolitic imidazole frameworks (ZIFs) as a precursor for the fabrication of the ZIF-derived N, S co-doped carbon-supported zinc single-atom catalyst (CNS@Zn1-AA) via the pyrolysis of S-doped ZIF-8, which was modified by aniline, ammonia and thiourea and prepared by one-pot ball milling at room temperature. This catalyst, in which Zn is dispersed as the single atom, displays superior activity in N-alkylation via the hydrogen-borrowing strategy (120 °C, turnover frequency (TOF) up to 8.4 h-1). S-doping significantly enhanced the catalytic activity of CNS@Zn1-AA, as it increased the specific surface area and defects of this material and simultaneously increased the electron density of Zn sites in this catalyst. Furthermore, this catalyst had excellent stability and recyclability, and no obvious loss in activity after eight runs.
Collapse
Affiliation(s)
- Xueping Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiacheng Reng
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guigao Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| |
Collapse
|
5
|
Lin Y, Wang F, Ren E, Zhu F, Zhang Q, Lu GP. N, Si-codoped carbon-based iron catalyst for efficient, selective synthesis of pyrroles from nitroarenes: The role of Si doping. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Mastalir Á, Molnár Á. Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wang F, Zhu F, Ren E, Zhu G, Lu GP, Lin Y. Recent Advances in Carbon-Based Iron Catalysts for Organic Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193462. [PMID: 36234590 PMCID: PMC9565280 DOI: 10.3390/nano12193462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Carbon-based iron catalysts combining the advantages of iron and carbon material are efficient and sustainable catalysts for green organic synthesis. The present review summarizes the recent examples of carbon-based iron catalysts for organic reactions, including reduction, oxidation, tandem and other reactions. In addition, the introduction strategies of iron into carbon materials and the structure and activity relationship (SAR) between these catalysts and organic reactions are also highlighted. Moreover, the challenges and opportunities of organic synthesis over carbon-based iron catalysts have also been addressed. This review will stimulate more systematic and in-depth investigations on carbon-based iron catalysts for exploring sustainable organic chemistry.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guofu Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
- Correspondence: (G.-P.L.); (Y.L.)
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (G.-P.L.); (Y.L.)
| |
Collapse
|
8
|
Chen L, Wu J, Lu GP, Zhang Q, Su T, Cai C. Al(PO3)3 supported NiMo bimetallic catalyst for selective synthesis of fatty alcohols from lipids. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Su TY, Lu GP, Sun KK, Zhang M, Cai C. ZIF-Derived Metal/N-Doped Porous Carbon Nanocomposites: Efficient Catalysts for Organic Transformations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02211c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, zeolitic imidazolate framework (ZIF)-derived metal/N-doped porous carbon nanocomposites (M@NCs) have emerged as a class of appealing heterogeneous catalysts applied in organic synthesis, and the striking features mainly involve low-cost...
Collapse
|
10
|
Wang F, Zhu F, Ren E, Zhang Q, Lu GP, Lin Y. Fe–FeO x nanoparticles encapsulated in N-doped carbon material: a facile catalyst for selective synthesis of quinazolines from alcohols in water. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Fe–FeOx@NC catalyst with N-doped carbon encapsulated Fe–FeOx nanoparticles has excellent performance in the synthesis of quinazolines.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
11
|
Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|