1
|
Lu MJ, Zhang SQ, Wang S, Zhao KH, Kandegama W, Chen MX, Jiang N, Li XY. ZnIn 2S 4/TiO 2 NRs heterojunction-multifunctional hydrogel hybrid for ultrasensitive photoelectrochemical immunoassay. Biosens Bioelectron 2025; 286:117618. [PMID: 40413995 DOI: 10.1016/j.bios.2025.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
The prevalence of tobacco virus diseases has caused serious losses to the tobacco industry, making the development of efficient, sensitive, and convenient virus detection technologies increasingly important. Photoelectrochemical biosensors have been widely used in various fields due to their advantages, including low background signal, convenient operation, low cost, and fast response. However, few studies have explored the use of photoelectric sensing analysis technology for the detection of plant viruses. In this study, we propose a novel biosensor based on semiconductor heterojunction nanomaterials for the detection of plant virus tobacco mosaic virus (TMV). The sensor utilizes a ZnIn2S4/Titanium dioxide nanorod arrays (TiO2 NRs) heterojunction nanocomposite, modified with fluorine-doped tin oxide (FTO), as a photoelectrode. This photoelectrode triggers a gelation reaction of the hydrogel by coupling the Ca2+ generated in the 96-well plate with TMV immune recognition events, thereby altering the interfacial mass transfer on the photoelectrode surface. This gelation significantly hinders the light absorption of the ZnIn2S4/TiO2 NRs/FTO photoelectrodes, ultimately resulting in a corresponding change in the output current signal. The biosensor demonstrates excellent analytical performance, with a detection limit of 0.01 pg mL-1 for TMV. This work provides a novel approach for the analysis and detection of plant viruses, holds significant potential for further development. It is expected to provide a general platform for detection and analysis of plant viruses, agricultural pollutants, food residues and other fields in the future.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Sheng Wang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170, Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Nan Jiang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhu ZX, Zhang X. Construction of a ratiometric electrochemical sensor for Bisphenol A detection by coupling nonionic surfactant-decorated conductive carbon black with ferricyanide probe. Talanta 2025; 283:127084. [PMID: 39447398 DOI: 10.1016/j.talanta.2024.127084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
In this work, a novel ratiometric electrochemical sensor for bisphenol A (BPA) detection was facilely constructed by coupling conductive carbon black (VXC-72R) with ferricyanide probe. The VXC-72R was decorated with nonionic surfactant Tween to enhance the sensitivity and coated on glassy carbon electrode (GCE), whereas K3[Fe(CN)6] was introduced into electrolyte solution as an internal reference probe to realize dual-signal outputs. The present ratiometric electrochemical sensor achieved a highly sensitive and selective detection of BPA in PBS solution (pH = 7.0), with a linear range of 0.08-40.0 μM and detection limit of 0.05 μM. Moreover, it has been successfully applied to the determination of BPA in real lake water and milk samples with the satisfactory recoveries rates of 94.8-102.3 %.
Collapse
Affiliation(s)
- Zong-Xian Zhu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xuan Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China.
| |
Collapse
|
3
|
Lu MJ, Zhao KH, Zhang SQ, Cai XB, Kandegama W, Chen MX, Sun Y, Li XY. Research Progress of Biosensor Based on Organic Photoelectrochemical Transistor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17746-17761. [PMID: 39079007 DOI: 10.1021/acs.jafc.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiao-Bo Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170 Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079, China
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
5
|
He S, Xie D, Wang B, Zhu M, Hu S. Photocatalytic fuel cell based on integrated silicon nanowire arrays/zinc oxide heterojunction anode for simultaneous wastewater treatment and electricity production. J Colloid Interface Sci 2023; 650:1993-2002. [PMID: 37531666 DOI: 10.1016/j.jcis.2023.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Photocatalytic fuel cells (PFCs) convert organic waste into electricity, thereby providing a potential solution for remediating environmental pollution and solving energy crises. Most PFCs for energy generation applications use powder photocatalysts, which have poor mechanical stability, high internal resistance, and may detach from the substrate during reactions, leading to unstable performance. Integrated photoelectrodes can overcome the drawbacks of powder catalysts. In this study, an integrated photoanode was prepared based on a silicon nanowire arrays/zinc oxide (Si NWs/ZnO) heterojunction by combining metal-assisted chemical etching (MACE) and hydrothermal methods. The resulting photoanode was used to assemble a PFC for simultaneous electricity generation and Rhodamine (RhB) dye wastewater degradation. This PFC showed excellent cell performance under irradiation, with a short-circuit current density of 0.183 Am-2, an open-circuit voltage (OCV) of 0.72 V, and a maximum power density of 0.87 W m-2. It could also be used continuously 20 times while degrading > 90% of RhB. This performance was ascribed to the three-dimensional (3D) structure and large surface area of Si NWs, as well as the matched band structure of ZnO, which facilitated the efficient separation and transport of photogenerated carriers in Si NWs/ZnO. The integrated structure also shortened the carrier transport pathways and suppressed carrier recombination. This research provides a foundation for the development of efficient, stable, low-cost, small-scale PFCs.
Collapse
Affiliation(s)
- Shenglin He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Dongxue Xie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; College of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Baoling Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 511443, China
| | - Sujuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| |
Collapse
|
6
|
Pham TN, Van Hoang O, Van Manh T, Trang NLN, Oanh VTK, Lam VD, Phan VN, Le AT. An insight of light-enhanced electrochemical kinetic behaviors and interfacial charge transfer of CuInS 2/MoS 2-based sensing nanoplatform for ultra-sensitive detection of chloramphenicol. Anal Chim Acta 2023; 1270:341475. [PMID: 37311615 DOI: 10.1016/j.aca.2023.341475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Owing to the effective combination between MoS2 sheets with CuInS2 nanoparticles (NPs), a direct Z-scheme heterojunction was successfully constructed and proved as a promising structure to modify the working electrode surface with the aim of enhancing overall sensing performance towards CAP detection. Herein, MoS2 was employed as a high mobility carrier transport channel with a strong photo-response, large specific surface area, and high in-plane electron mobility, while CuInS2 acted as an efficient light absorber. This not only offered a stable nanocomposite structure but also created impressive synergistic effects of high electron conductivity, large surface area, highlight exposure interface, as well as favorable electron transfer process. Moreover, the possible mechanism and hypothesis of the transfer pathway of photo-induced electron-hole pairs on the CuInS2-MoS2/SPE as well as their impacts on the redox reaction of K3/K4 probes and CAP were proposed and investigated in detail via a series of calculated kinetic parameters, demonstrating the high practical applicability of light-assisted electrodes. Indeed, the detection concentration range of the proposed electrode was widened from 0.1 to 50 μM, compared with that of 1-50 μM without irradiation. Also, the LOD and sensitivity values were calculated to be approximately 0.06 μM and 0.4623 μA μM-1, which is better than that of 0.3 μM and 0.095 μA μM-1 without irradiation.
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam.
| | - Ong Van Hoang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; University of Transport Technology, Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam
| | - Tien Van Manh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Vu Thi Kim Oanh
- Graduate University of Science and Technology (GUST) and Institute of Physics (IOP), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Vu Dinh Lam
- Graduate University of Science and Technology (GUST) and Institute of Physics (IOP), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam.
| |
Collapse
|
7
|
Lin S, Lin T, Wang W, Liu C, Ding Y. High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4569. [PMID: 37444883 DOI: 10.3390/ma16134569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
Photodetectors (PDs) based on two-dimensional (2D) materials have promising applications in modern electronics and optoelectronics. However, due to the intralayer recombination of the photogenerated carriers and the inevitable surface trapping stages of the constituent layers, the PDs based on 2D materials usually suffer from low responsivity and poor response speed. In this work, a distinguished GaN-based photodetector is constructed on a sapphire substrate with Te/metal electrodes. Due to the metal-like properties of tellurium, the band bending at the interface between Te and GaN generates an inherent electric field, which greatly reduces the carrier transport barrier and promotes the photoresponse of GaN. This Te-enhanced GaN-based PD show a promising responsivity of 4951 mA/W, detectivity of 1.79 × 1014 Jones, and an external quantum efficiency of 169%. In addition, owing to the collection efficiency of carriers by this Te-GaN interface, the response time is greatly decreased compared with pure GaN PDs. This high performance can be attributed to the fact that Te reduces the contact resistance of the metal electrode Au/Ti to GaN, forming an ohmic-like contact and promoting the photoresponse of GaN. This work greatly extends the application potential of GaN in the field of high-performance photodetectors and puts forward a new way of developing high performance photodetectors.
Collapse
Affiliation(s)
- Sheng Lin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tingjun Lin
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenliang Wang
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- State Key Laboratory of Crystal Materials, School of Microelectronics, Institute of Novel Semiconductors, Shandong Technology Center of Nanodevices and Integration, Shandong University, Jinan 250100, China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
8
|
Zhu B, Dong Q, Huang J, Song D, Chen L, Chen Q, Zhai C, Wang B, Klemeš JJ, Tao H. Visible-light driven p-n heterojunction formed between α-Bi 2O 3 and Bi 2O 2CO 3 for efficient photocatalytic degradation of tetracycline. RSC Adv 2023; 13:1594-1605. [PMID: 36688072 PMCID: PMC9827591 DOI: 10.1039/d2ra08162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
To improve the efficiency of photocatalytic oxidative degradation of antibiotic pollutants, it is essential to develop an efficient and stable photocatalyst. In this study, a polymer-assisted facile synthesis strategy is proposed for the polymorph-controlled α-Bi2O3/Bi2O2CO3 heterojunction retained at elevated calcination temperatures. The p-n heterojunction can effectively separate and migrate electron-hole pairs, which improves visible-light-driven photocatalytic degradation from tetracycline (TC). The BO-400@PAN-140 photocatalyst achieves the highest pollutant removal efficiency of 98.21% for photocatalytic tetracycline degradation in 1 h (λ > 420 nm), and the degradation efficiency was maintained above 95% after 5 cycles. The morphology, crystal structure, and chemical state of the composites were analysed by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Ultraviolet-visible diffuse reflection, transient photocurrent response, and electrochemical impedance spectroscopy were adopted to identify the charge transfer and separation efficiency of photogenerated electron-hole pairs. The EPR results verified h+ and ˙OH radicals as the primary active species in the photocatalytic oxidation reactions. This observation was also consistent with the results of radical trapping experiments. In addition, the key intermediate products of the photocatalytic degradation of TC over BO-400@PAN-140 were identified via high-performance liquid chromatography-mass spectrometry, which is compatible with two possible photocatalytic reaction pathways. This work provides instructive guidelines for designing heterojunction photocatalysts via a polymer-assisted semiconductor crystallographic transition pathway for TC degradation into cleaner production.
Collapse
Affiliation(s)
- Baikang Zhu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
- United National-Local Engineering Laboratory of Oil & Gas Storage and Transportation Technology Zhoushan Zhejiang 316022 China
- Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control Zhoushan Zhejiang 316022 China
| | - Qinbing Dong
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Jianghua Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Debin Song
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Qingguo Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Bohong Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno Technická 2896/2 616 69 Brno Czech Republic
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
- Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control Zhoushan Zhejiang 316022 China
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
9
|
In-Situ Construction Molecular Imprinting Electrocatalyst of Au-MoO3/Graphene for Bisphenol A Determination with Long-Term Stability. Catalysts 2023. [DOI: 10.3390/catal13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Molecular imprinting (MI) technology has been used in electrochemical analysis technology because of its unique selectivity and specificity. In this work, an electrochemical sensor based on in-situ inorganic MI-Au-MoO3/graphene for bisphenol A (BPA) analysis is designed, where MI-MoO3 is hybridized with graphene nanosheets and Au nanoparticles, and BPA is acted as the temple molecular. Differential pulse voltammetry (DPV) was used to evaluate the sensing performance of the MI-Au-MoO3/rGO sensor toward BPA determination and it is about 2.0 times that of NI-Au-MoO3/rGO. The as-constructed sensor presents a wide linear range from 0.01 to 106.04 μM and a low limit of detection of 0.003 μM. It also displays outstanding stability and repeatability up to 20 days, and can be used to analyze the content of BPA in dust leachate and plastic bottle. This sensor offers a promising strategy for environment pollution and food analysis via MI technology.
Collapse
|
10
|
Du Y, Zhang Y, Pu X, Fu X, Li X, Bai L, Chen Y, Qian J. Synthesis of bifunctional NiFe layered double hydroxides (LDH)/Mo-doped g-C 3N 4 electrocatalyst for efficient methanol oxidation and seawater splitting. CHEMOSPHERE 2023; 312:137203. [PMID: 36375606 DOI: 10.1016/j.chemosphere.2022.137203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To boost the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) of pristine NiFe-layered double hydroxides (LDH), the NiFe-LDH/Mo-doped graphitic carbon nitride (NiFe-LDH/MoCN) heterojunction was synthesized herein through hydrothermal method. The establishment of built-in electric field in NiFe-LDH/MoCN heterojunction enhanced the electrochemical oxidation activities towards both seawater splitting and methanol oxidation, via the improving electrocatalyst surface wettability and conductivity. Almost 10-fold enhancement of turnover frequency (TOF) and electrochemical active surface area (ECSA) than pure NiFe-LDH implied more active sites to participate in catalytic reactions via Mo doping and the formation of heterostructure. Moreover, the local charge redistribution demonstrated in the NiFe-LDH/MoCN interface region may favor the adsorption of methanol and OH- in the seawater. The present work may expound the strong coupling interaction and the establishment of built-in electric field in the interface between NiFe-LDH and semiconductor to enhance both methanol oxidation and seawater oxidation for NiFe-LDH.
Collapse
Affiliation(s)
- Yufei Du
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yichu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoying Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yongjun Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China.
| |
Collapse
|
11
|
Qiao L, Zhao Y, Zhang Y, Zhang M, Tao Y, Xiao Y, Zeng X, Zhang Y, Zhu Y. Designing a Stable g-C 3N 4/BiVO 4-Based Photoelectrochemical Aptasensor for Tetracycline Determination. TOXICS 2022; 11:17. [PMID: 36668743 PMCID: PMC9865260 DOI: 10.3390/toxics11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The excessive consumption of tetracycline (TC) could bring a series of unpredictable health and ecological risks. Therefore, it is crucial to develop convenient and effective detection technology for TC. Herein, a "signal on" photoelectrochemical (PEC) aptasensor was constructed for the stable detection of TC. Specifically, the g-C3N4/BiVO4 were used to promote the migration of photo-generated charges to an enhanced photocurrent response. TC aptamer probes were stably fixed on the g-C3N4/BiVO4/FTO electrode as a recognition element via covalent bonding interaction. In the presence of TC, the aptamer probes could directly recognize and capture TC. Subsequently, TC was oxidized by the photogenerated holes of g-C3N4/BiVO4, causing an enhanced photocurrent. The "signal on" PEC aptasensor displayed a distinguished detection performance toward TC in terms of a wide linear range from 0.1 to 500 nM with a low detection limit of 0.06 nM, and possessed high stability, great selectivity, and good application prospects.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuanyuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xinxia Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
12
|
Tan T, Wang X, Zhou X, Ma H, Fang R, Geng Q, Dong F. Highly active Cs 2SnCl 6/C 3N 4 heterojunction photocatalysts operating via interfacial charge transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129694. [PMID: 36104916 DOI: 10.1016/j.jhazmat.2022.129694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel lead-free perovskite heterojunction Cs2SnCl6/C3N4 composite was constructed and applied for photocatalytic NO purification. After design optimization, the Cs2SnCl6/C3N4 heterojunction exhibit excellent and stable photocatalytic NO purification ability under visible-light irradiation, which is significantly better than pristine Cs2SnCl6 and C3N4. Combined in-situ DRIFTS and electron spin resonance spin-trapping, the mechanism of Cs2SnCl6/C3N4 photocatalytic NO removal was revealed. Under visible-light irradiation, the photo-generated electrons on the conduction band of C3N4 would spontaneously migrate to the CB of Cs2SnCl6, leaving holes (h+) on the valence band of C3N4, contributing to efficiently segregated charge carriers and improved photocatalytic NO purification. Density functional theory calculations also revealed the directional electron transfer at the C3N4 and Cs2SnCl6 interface, in which the charge was migrated from C3N4 to Cs2SnCl6 induced by the internal electric field. This research sheds fresh light on the fabrication of Cs2SnCl6/C3N4 heterojunctions as well as its effective interfacial charge separation.
Collapse
Affiliation(s)
- Tianqi Tan
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xuemei Wang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xi Zhou
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hao Ma
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruimei Fang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qin Geng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China.
| | - Fan Dong
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Mikrochim Acta 2022; 189:208. [PMID: 35501498 DOI: 10.1007/s00604-022-05289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 01/01/2023]
Abstract
S, N co-doped graphene quantum dot (S, N-GQD) materials have been composited via a one-pot pattern and used as photosensitive materials to construct a label-free photoelectrochemical (PEC) sensor. The PEC experiments show an enhanced photocurrent response toward Bisphenol A (BPA) sensing due to the increased charge transfer rate and the enhanced absorption of visible light. Compared with dark conditions, the photocurrent signal (- 0.2 V vs. SCE) is greatly increased because of the effective oxidation of BPA by photogenerated holes and the rapid electron transfer of S, N-GQDs on the PEC sensing platform. Under optimal conditions linear current response to BPA is in two ranges of 0.12-5 µM and 5-40 µM. The limit of detection is 0.04 µM (S/N = 3). The designed sensor has enduring stability and admirable interference immunity. It provides an alternative approach for BPA determination in real samples with recoveries of 99.3-103% and RSD of 2.0-4.1%.
Collapse
Affiliation(s)
- Qiaowei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhilong He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Duan Bin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Screening promising TM-doped CeO2 monolayer for formaldehyde sensor with high sensitivity and selectivity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry.
Collapse
|
18
|
Wu K, Jiang R, Zhao Y, Mao L, Gu X, Cai X, Zhu M. Hierarchical NiCo 2S 4/ZnIn 2S 4 heterostructured prisms: High-efficient photocatalysts for hydrogen production under visible-light. J Colloid Interface Sci 2022; 619:339-347. [PMID: 35397463 DOI: 10.1016/j.jcis.2022.03.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023]
Abstract
Exploring low-cost co-catalyst to ameliorate the photocatalytic activity of semiconductors sets a clear direction for solving energy crisis and achieving efficient solar-chemical energy conversion. In this work, a unique hierarchical hollow heterojunction was constructed by in-situ growing ZnIn2S4 nanosheets on the porous NiCo2S4 hollow prisms through a low temperature solvothermal method, in which NiCo2S4 with semi-metal property acted as non-noble metal co-catalyst. NiCo2S4 co-catalyst was innovatively encapsulated in ZnIn2S4, which not only relieved the light shielding effect caused by the large loading amount of co-catalyst, but also supplied abundant active sites for H2 evolution. The hierarchical hollow heterostructure of NiCo2S4/ZnIn2S4 provided a highly efficient channel for charge transfer. Combining these advantages, NiCo2S4/ZnIn2S4 composite demonstrated excellent photocatalytic activity. In the absence of sacrificial agent, the NiCo2S4/ZnIn2S4 photocatalyst achieved a remarkable improved H2 yield of 0.77 mmol g-1h-1 under visible light irradiation (λ > 400 nm), which is 6.6 times greater than that of ZnIn2S4. Besides, NiCo2S4 even exhibited better performance on the H2 evolution improvement of ZnIn2S4 than precious metal Pt. This work will offer novel insights into the reasonable design of non-noble metal photocatalysts with respectable activity for water splitting.
Collapse
Affiliation(s)
- Kai Wu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Renqian Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Yulong Zhao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou 221116, People's Republic of China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 511443, People's Republic of China
| |
Collapse
|
19
|
Zeng Q, Wei Q, Luo J, Qian Y, Yang M, Zou Y, Lu L. Novel photoelectrochemical immunosensor for MCF-7 cell detection based on n-p organic semiconductor heterojunction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Qin S, Zhang H, Cao Y, Zheng F, Mou Z, Sun J, Zhu M. Highly dispersed Ag nanoparticles in situ creating rich cyano defects in carbon nitride for efficient photocatalytic H 2 production. NEW J CHEM 2021. [DOI: 10.1039/d1nj04959c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the obtained Ag–C–CN photocatalyst, the cyano defects act as charge transfer channels to promote electron transfer, making Ag nanoparticles more active as a HER cocatalyst.
Collapse
Affiliation(s)
- Siqie Qin
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Hui Zhang
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Yuqi Cao
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Fukai Zheng
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Zhigang Mou
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Jianhua Sun
- School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|