1
|
Ying Y, Fang M, Wang C, Yan Z, Xie H, Wu W, Tang Z, Liu Y. Large-Area Ultrathin Covalent-Organic Framework Membranes for Surface-Enhanced Raman Scattering: Optimal Performance Through Thickness Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501846. [PMID: 40135365 DOI: 10.1002/smll.202501846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Exploration and construction of novel π-conjugated organic semiconductors with low cost, small background interference, and excellent performance as surface-enhanced Raman scattering (SERS) substrates is one of the current focuses for the development of SERS technology. Based on precise control over synthesis conditions, a series of large-area tetraphenylporphyrin-based 2D covalent-organic framework membranes (2D-porphyrin-COFs) with high uniformity and precisely controllable thickness are constructed as SERS substrates. The delicate balance among the intensity of the substrate interference, the degree of π-conjugation extension, and the proportion of the edge-on channels within the total exposed region results in the optimal SERS performance of ultrathin multilayer 2D-porphyrin-COFs with the thickness between 5.0 to 9.0 nm toward MB, including the enhancement factor on the order of 105 and the experimental limit of detection down to 10-8 M, which are comparable to classic plasmonic metal substrates. This work highlights the powerful application potential of COFs in the SERS field and unveils thickness control as an effective strategy to facilitate the exploration of high-performance organic SERS substrates.
Collapse
Affiliation(s)
- Yue Ying
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Munan Fang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Congying Wang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Xie
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenxuan Wu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Wang Q, Yang L, Li L, Liang J. Design and application of Solid Solution Materials in Heterogeneous Photocatalysis. Chem Asian J 2025; 20:e202401737. [PMID: 40047532 DOI: 10.1002/asia.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
The research progress of solid solution materials in the field of photocatalysis was introduced. The synthesis methods of solid solution photocatalytic materials are comprehensively expounded, and the modification strategies of solid solution photocatalysts are analyzed and discussed. This paper systematically summarizes the characteristics and development of the main catalytic systems of solid solution materials, and explored the application of first-principles calculations in the photocatalysis of solid solution materials in combination with practical research. Subsequently, the main application progress of photocatalysis of solid solution materials in the fields of environmental remediation and energy conversion was introduced. Finally, the current challenges, development directions and prospects are prospected.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Le Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Li Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jun Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
3
|
Ji W, Lu T, Liu Y. Nanostructure engineering for ferroelectric photovoltaics. NANOSCALE 2025; 17:6938-6959. [PMID: 39873113 DOI: 10.1039/d4nr04908j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Ferroelectric photovoltaics have attracted increasing attention since their discovery in the 1970s, due to their above-bandgap photovoltage and polarized-light-dependent photocurrent. However, their practical applications have been limited by their weak visible light absorption and low photoconductivity. Intrinsic modification of the material, such as bandgap tuning through chemical doping, has proven effective, but usually leads to the degradation of ferroelectricity. Recently, various nanostructures, such as multilayer heterojunctions, nanoparticles, vertically aligned nanocomposites and polar nanoregions, have been developed to enhance photovoltaic performance. These approaches enable the nanoassembly of materials in a lower-dimension manner to optimize the bulk photovoltaic effect whilst effectively preserving or even inducing ferroelectricity. This review highlights the fabrication processes of these emerging ferroelectric nanostructures and evaluates their photovoltaic performance.
Collapse
Affiliation(s)
- Wenzhong Ji
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
| | - Teng Lu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
4
|
Salaheldeen M, M. Abu-Dief A, El-Dabea T. Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:768. [PMID: 40004296 PMCID: PMC11857648 DOI: 10.3390/ma18040768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
This review article provides a comprehensive overview of the pivotal role that nanomaterials, particularly graphene and its derivatives, play in advancing hydrogen energy technologies, with a focus on storage, production, and transport. As the quest for sustainable energy solutions intensifies, the use of nanoscale materials to store hydrogen in solid form emerges as a promising strategy toward mitigate challenges related to traditional storage methods. We begin by summarizing standard methods for producing modified graphene derivatives at the nanoscale and their impact on structural characteristics and properties. The article highlights recent advancements in hydrogen storage capacities achieved through innovative nanocomposite architectures, for example, multi-level porous graphene structures containing embedded nickel particles at nanoscale dimensions. The discussion covers the distinctive characteristics of these nanomaterials, particularly their expansive surface area and the hydrogen spillover effect, which enhance their effectiveness in energy storage applications, including supercapacitors and batteries. In addition to storage capabilities, this review explores the role of nanomaterials as efficient catalysts in the hydrogen evolution reaction (HER), emphasizing the potential of metal oxides and other composites to boost hydrogen production. The integration of nanomaterials in hydrogen transport systems is also examined, showcasing innovations that enhance safety and efficiency. As we move toward a hydrogen economy, the review underscores the urgent need for continued research aimed at optimizing existing materials and developing novel nanostructured systems. Addressing the primary challenges and potential future directions, this article aims to serve as a roadmap to enable scientists and industry experts to maximize the capabilities of nanomaterials for transforming hydrogen-based energy systems, thus contributing significantly to global sustainability efforts.
Collapse
Affiliation(s)
- Mohamed Salaheldeen
- Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastian, Spain
- Department of Applied Physics I, EIG, University of the Basque Country, UPV/EHU, 20018 San Sebastian, Spain
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Madinah 42353, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, King Salman International University, Ras Sudr, Sinai 46612, Egypt;
| |
Collapse
|
5
|
Bao X, Luo H, Weng T, Chen Z, Yan X, An F, Jiang F, Chen H. Photothermal Material-Based Solar-Driven Cogeneration of Water and Electricity: An Efficient and Promising Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411369. [PMID: 39828590 DOI: 10.1002/smll.202411369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Indexed: 01/22/2025]
Abstract
With the increasing demand for fresh-water and electricity in modern society, various technologies are being explored to obtain fresh-water and electricity. Due to advances in materials science, solar-driven interfacial evaporation (SDIE) systems have attracted widespread attention because they require only solar energy, and possess a high evaporation rate and little pollution. The researchers combined energy harvesting measures into the system to output electricity, further improving energy utilization. However, more in-depth research and review remain on using SDIE systems for efficient water-electricity cogeneration. Therefore, the mechanisms of different photothermal materials that utilize solar energy to produce thermal energy are first summarized in this paper. Subsequently, the mechanism and application of thermal, mechanical, chemical, and evaporation energy to produce electrical power in SDIE water-electricity cogeneration systems are discussed. Concurrently, vital mathematical equations and widely used mathematical simulation methods for performance evaluation and practical applications are presented. The design and operation of water-electricity cogeneration systems based on photothermal materials are analyzed and summarized. Based on a review and in-depth understanding of these aspects, the future development direction of cogeneration is proposed to address the problems faced in basic research and practical applications.
Collapse
Affiliation(s)
- Xiangxin Bao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haopeng Luo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tingyi Weng
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zihan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xing Yan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fengxia An
- China Energy Science and Technology Research Institute Co. Ltd., Nanjing, 210023, P. R. China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
6
|
Liu Q, Yang G, Li R, Yang X, Duan Y, Chen F, Shen Z. Principle Design of C-C Coupling Pathway Towards Highly Selective C2 Products Using Photocatalytic CO 2 Reduction:A Review. Chem Asian J 2024:e202401379. [PMID: 39676051 DOI: 10.1002/asia.202401379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Photocatalytic conversion of environmental CO2 into valuable fuels is expected to alleviate fossil fuel and pollution problems. However, intricate product-reaction pathways complicate the regulation of product selectivity. Most studies in this field have focused on increasing productivity rather than on controlling product formation. To date, the major products of photocatalytic CO2 reduction reactions (CO2RRs) are C1 compounds, as opposed to the higher-value C2 compounds, because of the low C2 selectivity of this process. The design of C-C coupled pathways is paramount to facilitate selective access to C2 products in the photocatalytic CO2RR. In this review, we discuss the mechanisms and pathways of CO2RR product generation based on recent research results and summarise the work on CO2RR to C2 products. This review aims to modulate the product-generation pathway to improve the yield and selectivity of C2 products by facilitating C-C coupling reactions. Finally, some of the current challenges in the field of the CO2RR to C2 are outlined, including possible mechanistic interpretations, cost of catalyst use, reactor design, and potential solutions.
Collapse
Affiliation(s)
- Qian Liu
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Guang Yang
- Nanke Youyi (Tianjin) Technology Co., LTD, Tianjin, 300192, P.R. China
| | - Ruru Li
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Xiaowen Yang
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Yingnan Duan
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Fangyuan Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zhurui Shen
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
7
|
Liu X, Huang B, Li J, Li B, Lou Z. Full-spectrum plasmonic semiconductors for photocatalysis. MATERIALS HORIZONS 2024; 11:5470-5498. [PMID: 39139133 DOI: 10.1039/d4mh00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
8
|
Liu Y, Yang Y, E Y, Pang C, Cui D, Li A. Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. CHINESE CHEM LETT 2024; 35:109651. [DOI: 10.1016/j.cclet.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Liu J, Yang Y, Lin W, Wang W, Xiao S, Guo X, Zhu C, Zhang L. Cu 1.94S-ZnS-CdS ternary heteronanoplates with efficient carrier transfer for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 672:744-752. [PMID: 38870765 DOI: 10.1016/j.jcis.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Incorporating precise morphology control and efficient carrier separation into single-nanoparticle heterojunctions to achieve high photocatalytic efficiency remains a significant challenge. Here, we synthesized Cu1.94S-ZnS-CdS ternary heteronanoplates (HNPs) with a continuous sublattice structure using cation exchange reactions. Femtosecond transient absorption spectroscopy (TAS) confirms that ternary heterojunction enhances carrier separation efficiency, demonstrating both rapid separation (∼0.2 ps) and an extended lifetime (∼1512 ps). The synergistic combination results in a significantly enhanced hydrogen evolution rate of 2.012 mmol·g-1·h-1, which is 17 times and 183 times higher than that achieved by pure CdS and ZnS, respectively. Furthermore, there is no significant decrease in the activity of Cu1.94S-ZnS-CdS in photocatalytic hydrogen evolution after 288 days of placement. Our work offers an alternative approach for designing noble-metal-free photocatalysts with precisely defined materials and interfaces, aiming to enhance both photocatalytic hydrogen evolution efficiency and stability.
Collapse
Affiliation(s)
- Jiawen Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Ying Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China.
| | - Weihuang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Weijia Wang
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Congtan Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Lin Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Zakaria H, Li Y, Wei H, Fathy MM, Zhang C. Noble metal-free plasmonic Cu/WO 3-x@ZNC bi-functional composite for ciprofloxacin photocatalytic degradation and photothermal water evaporation via visible-infrared exposure. CHEMOSPHERE 2024; 364:143309. [PMID: 39265733 DOI: 10.1016/j.chemosphere.2024.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Herein, coupling of noble metal-free plasmonic copper nanoparticles with tungsten suboxide and supporting on zeolite nanoclay (Cu/WO3-x@ZNC) composite will be introduced for bi-functional photocatalytic ciprofloxacin (CIP) degradation and water photothermal evaporation under visible/infrared (Vis/IR) exposure. Reduced band-gap of WO3-x via oxygen vacancies creation and localized surface plasmon resonance (LSPR) formation by Cu nanoparticles contributed significantly the extension and intensification of composite's photo-absorption range. Furthermore, small mesoporous structure of ZNC enhanced CIP adsorption and charge carriers separation where the reported photocatalytic efficiencies were 88.3 and 81.7% upon IR and Vis light exposure respectively. It was evidenced that plasmonic hot electrons (e-.s) and hydroxyl radicals (OH•-) performed the basic functions of the photocatalytic process. At the other side, oxygen vacancies existence, plasmonic effect, and confining thermal characteristics of WO3-x, Cu, and ZNC correspondingly induced water photothermal evaporation with efficiencies up to 97.5 and 72.8% under IR and Vis illumination respectively. This work introduces synthesis of a novel bi-functional photocatalytic-photothermal composite by metal sub-oxide and non-noble metal plasmonic coupling and supporting on naturally-derived carrier for water restoration under broad spectral exposure.
Collapse
Affiliation(s)
- Hossam Zakaria
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; The Egyptian Chinese University (ECU), Cairo, Egypt.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Hongyu Wei
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China.
| | - Mohamed M Fathy
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt.
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou, 213200, PR China.
| |
Collapse
|
11
|
Jiang P, Wang K, Liu W, Song Y, Zheng R, Chen L, Su B. Hot Electrons Induced by Localized Surface Plasmon Resonance in Ag/g-C 3N 4 Schottky Junction for Photothermal Catalytic CO 2 Reduction. Polymers (Basel) 2024; 16:2317. [PMID: 39204537 PMCID: PMC11359675 DOI: 10.3390/polym16162317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Converting carbon dioxide (CO2) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron-hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with localized surface plasmon resonance (LSPR) are combined with g-C3N4 to form a Schottky junction for photothermal catalytic CO2 reduction. The Ag/g-C3N4 exhibits higher photocatalytic CO2 reduction activity under UV-vis light; the CH4 and CO evolution rates are 10.44 and 88.79 µmol·h-1·g-1, respectively. Enhanced photocatalytic CO2 reduction performances are attributed to efficient hot electron transfer in the Ag/g-C3N4 Schottky junction. LSPR-induced hot electrons from Ag nanoparticles improve the local reaction temperature and promote the separation and transfer of photogenerated electron-hole pairs. The charge carrier transfer route was investigated by in situ irradiated X-ray photoelectron spectroscopy (XPS). The three-dimensional finite-difference time-domain (3D-FDTD) method verified the strong electromagnetic field at the interface between Ag and g-C3N4. The photothermal catalytic CO2 reduction pathway of Ag/g-C3N4 was investigated using in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS). This study examines hot electron transfer in the Ag/g-C3N4 Schottky junction and provides a feasible way to design a plasmonic metal/polymer semiconductor Schottky junction for photothermal catalytic CO2 reduction.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wenrui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yuhang Song
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Runtian Zheng
- Laboratory of Inorganic Materials Chemistry, University of Namur, B-5000 Namur, Belgium
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Baolian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, B-5000 Namur, Belgium
| |
Collapse
|
12
|
An S, Zhang L, Ding X, Xue Y, Tian J, Qin Y, You J, Wang X, Zhang H. A general strategy for the enhanced H 2 production performance of CdS/noble metal sulfide nanorods photocatalysts by cation exchange. J Colloid Interface Sci 2024; 664:848-856. [PMID: 38493650 DOI: 10.1016/j.jcis.2024.03.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
In this work, we report a series of noble metal (Ag, Au, Pt, etc.) sulfides that act as co-catalysts anchoring on CdS nanorods (NRs) obtained via a cation exchange strategy to promote photocatalytic hydrogen evolution. CdS NRs are first generated via a hydrothermal routine, noble metal sulfides are then in-situ grown on CdS NRs by a cation exchange method. CdS/Ag2S, CdS/Au2S and CdS/PtS NRs show improved hydrogen production rates (2506.88, 1513.17 and 1004.54 μmol g-1h-1, respectively), approximately 18, 11 and 7 times higher than CdS NRs (138.27 μmol g-1h-1). Among CdS/noble metal sulfide NRs, CdS/Ag2S NRs present the best H2 production performance. The apparent quantum efficiency (AQE) of CdS/Ag2S NRs achieves 3.11 % at λ = 370 nm. The improved photocatalytic performance of CdS/noble metal sulfide NRs dues to the following points: i) Noble metal sulfides on CdS NRs are beneficial for elevating light-absorbing and light-utilizing capacities, contributing to generating more photoexcited charges; ii) Noble metal sulfides are in-situ grown on CdS NRs as electron acceptors by a cation exchange method, thus the photoexcited electrons generated by CdS NRs rapidly migrate to the surface of noble metal sulfides, successfully accelerating the carriers separation efficiency. This series of noble metal sulfides acting as co-catalysts anchoring on CdS NRs offer new insights into the construction principles of high-performance photocatalytic hydrogen evolution catalysts.
Collapse
Affiliation(s)
- Shanna An
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Luming Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyan Ding
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yingying Qin
- Archives Department, China University of Petroleum (East China), Qingdao 266580, China.
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Xiaoxue Wang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang 110001, China.
| |
Collapse
|
13
|
Chong C, Boong SK, Raja Mogan T, Lee JK, Ang ZZ, Li H, Lee HK. Catalyst-On-Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co-Photocatalyst for Efficient Light-To-Chemical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309983. [PMID: 38174596 DOI: 10.1002/smll.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu2O co-photocatalyst than the fully deposited design (full-AgOcta@Cu2O). Mass-normalized rate constants of edge-AgOcta@Cu2O reveal up to 20-fold and 3-fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Collapse
Affiliation(s)
- Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tharishinny Raja Mogan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jinn-Kye Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering drive 3, Singapore, 117580, Singapore
| |
Collapse
|
14
|
Zhang G, Pan J, Dong X, Li X, Song Z, Liu Y, Liu X, Li Y, Li Q. Construction of atom co-sharing Bi/Bi 4O 5Br 2 nanosheet heterojunction for plasmonic-enhanced visible-light-driven photocatalytic antibacterial activity. Colloids Surf B Biointerfaces 2024; 238:113923. [PMID: 38692173 DOI: 10.1016/j.colsurfb.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.
Collapse
Affiliation(s)
- Guixue Zhang
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Jie Pan
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Xiaoyi Dong
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Liu
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaomeng Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China.
| |
Collapse
|
15
|
Yang J, Wang R, Sun X, Li Y, Liu J, Kuang X. Au/Ti 3C 2/g-C 3N 4 Ternary Composites Boost H 2 Evolution Efficiently with Remarkable Long-Term Stability by Synergistic Strategies. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38430126 DOI: 10.1021/acsami.3c15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The use of novel two-dimensional MXene materials and conventional g-C3N4 photocatalysts to fabricate the composites for hydrogen evolution reaction (HER) has attracted much attention, for which there is plenty of room for the enhancement of hydrogen evolution rates particularly under visible light and photostability. Herein, g-C3N4 was modified by copolymerization of malonamide and melamine and used to fabricate the ternary composites of Au particles and Ti3C2 MXene, and based on the synergistic effect, the composites enhanced the hydrogen evolution rates by 2.1, 99.8, and ∞ times compared with the unmodified g-C3N4 under UV, simulated sunlight, and visible light illumination, respectively. Moreover, the composite exhibited a sustained hydrogen evolution capacity in the cycle test for up to 120 h. Theoretical calculations and experimental results indicated that the hot electrons of Au are injected into the modified g-C3N4 and transferred to Ti3C2 simultaneously along with the photogenerated electrons of the modified g-C3N4 and then further transferred to Au, forming a photogenerated electron transfer channel of Au and modified g-C3N4 → Ti3C2 → Au within the composite. Ti3C2 acts as a bridge for fast separation of photogenerated electrons and holes on Au and modified g-C3N4, playing a key role in the enhanced photocatalytic performance. In addition, the visible light absorption ability of Au also positively contributed to the enhancement of visible light photocatalytic performance by providing hot electrons. Therefore, the selection of suitable cocatalysts for the design of composites is a crucial research direction to improve the photocatalytic performance and photostability of photocatalysts.
Collapse
Affiliation(s)
- Jia Yang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, P. R. China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin University of Technology, Guilin 541004, P. R. China
| | - Rong Wang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Xiaorui Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, P. R. China
| | - Yan Li
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jian Liu
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Xiaojun Kuang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
16
|
Subhadarshini A, Samal SK, Pattnaik A, Nanda B. Facile fabrication of plasmonic Ag/ZIF-8: an efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics. RSC Adv 2023; 13:31756-31771. [PMID: 37908651 PMCID: PMC10614039 DOI: 10.1039/d3ra04851a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Present article represents the fabrication of plasmonic Ag/ZIF-8 composite and its effect on antibacterial, haemolytic and photocatalytic degradation of antibiotics. Ag/ZIF-8 was prepared by varying molar concentrations (1 mM, 2.5 mM, and 5 mM) of AgNO3 into ZIF-8 using NaBH4 as a reducing agent by the sol-gel process. The material was then characterised using the XRD, XPS, FTIR, SEM, HRTEM, UVDRS, BET and EIS techniques. When it comes to breaking down the antibiotic CIP, the optimised Ag2.5/ZIF-8 exhibits the strongest photocatalytic capability, with a degradation efficiency of 82.3% after 90 minutes. Due to LSPR (Localised Surface Plasmon Resonance) as well as the efficient movement and separation of the interfaces of photo-generated charge carriers in Ag2.5/ZIF-8 may be the causes of this increase in photocatalytic degradation. The effect of several parameters, such as pH, a variety of catalysts, varying dose concentrations, scavenging and sustainability are being investigated. The para benzoquinone (OH˙) and citric acid (h+) the primary active species in the photocatalytic breakdown pathway, according to trapping study. Whereas, Ag5/ZIF-8 was optimised for greater antibacterial activity against S. aureus and E. coli due to the synergistic impact of Ag+ and Zn2+ in Ag5/ZIF-8 and in haemolytic experiment, all samples were discovered to be non-toxic to blood cells. Overall, the synthesised compound was discovered to be a reusable, affordable catalyst for water remediation that can also be used in biomedicine.
Collapse
Affiliation(s)
- Asima Subhadarshini
- Environmental Science, Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India 751030
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Binita Nanda
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| |
Collapse
|
17
|
Łapiński M, Kozioł R, Skubida W, Winiarz P, Mahjoub Yahia Elhassan R, Sadowski W, Kościelska B. Transformation of bimetallic Ag-Cu thin films into plasmonically active composite nanostructures. Sci Rep 2023; 13:10107. [PMID: 37344514 DOI: 10.1038/s41598-023-37343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023] Open
Abstract
Formation of plasmonically active silver, copper and composite silver-copper nanostructures were studied in this paper. Metallic nanostructures were fabricated by thermal disintegration, so called dewetting, of the thin films in an argon atmosphere. The formation process of the nanostructures was in-situ observed by a novel method, based on resistance measurements. The influence of the material and thickness of the initial thin film on temperature of their disintegration was investigated. Electrical measurements were validated by scanning electron microscopy observations, while metallic the behavior of nanostructures was studied by XPS method. The formation of silver-copper nanocomposite structures was confirmed by UV-vis spectroscopy. Plasmon resonance with two characteristic peaks for nanocomposite structures was observed.
Collapse
Affiliation(s)
- Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Robert Kozioł
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Wojciech Skubida
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Piotr Winiarz
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Rowa Mahjoub Yahia Elhassan
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio 10, 67100, L'Aquila, Italy
| | - Wojciech Sadowski
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Barbara Kościelska
- Institute of Nanotechnology and Materials Engineering, Advanced Materials Center, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
18
|
Mathew MS, Krishnan G, Mathews AA, Sunil K, Mathew L, Antoine R, Thomas S. Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1874. [PMID: 37368304 DOI: 10.3390/nano13121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The reckless use of non-replenishable fuels by the growing population for energy and the resultant incessant emissions of hazardous gases and waste products into the atmosphere have insisted that scientists fabricate materials capable of managing these global threats at once. In recent studies, photocatalysis has been employed to focus on utilizing renewable solar energy to initiate chemical processes with the aid of semiconductors and highly selective catalysts. A wide range of nanoparticles has showcased promising photocatalytic properties. Metal nanoclusters (MNCs) with sizes below 2 nm, stabilized by ligands, show discrete energy levels and exhibit unique optoelectronic properties, which are vital to photocatalysis. In this review, we intend to compile information on the synthesis, true nature, and stability of the MNCs decorated with ligands and the varying photocatalytic efficiency of metal NCs concerning changes in the aforementioned domains. The review discusses the photocatalytic activity of atomically precise ligand-protected MNCs and their hybrids in the domain of energy conversion processes such as the photodegradation of dyes, the oxygen evolution reaction (ORR), the hydrogen evolution reaction (HER), and the CO2 reduction reaction (CO2RR).
Collapse
Affiliation(s)
- Meegle S Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
- Research and Post Graduate Department of Chemistry, Mar Athanasius College, Kothamangalam 686666, India
| | - Greeshma Krishnan
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Amita Aanne Mathews
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Kevin Sunil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Leo Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
19
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|
20
|
Wang J, Wang C, Xu JJ, Xia XH, Chen HY. Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Ding Z, Li W, Dou Y, Zhou Y, Ren Y, Jing H, Liang X, Wang X, Li N. Triangular-shaped homologous heterostructure as photocatalytic H 2S scavenger and macrophage modulator for rheumatoid arthritis therapy. J Mater Chem B 2022; 10:8549-8564. [PMID: 36239131 DOI: 10.1039/d2tb01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/Ag2S triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/Ag2S-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic H2S scavenging and macrophage polarization stimulation. On one hand, the over-expressed H2S, which acted as a pro-inflammatory mediator to activate the MAPK/ICAM-1 pathway and exacerbate inflammation, was eliminated through photocatalysis. The homologous Ag and Ag2S of the heterostructure enhanced electron separation and transfer by acting as a charge acceptor and electron generator, respectively, which restrained electron/hole recombination and promoted photocatalysis efficiency. Additionally, the intrinsic superoxide dismutase (SOD) and catalase (CAT) activity of Ag decomposed the reactive oxygen species (ROS) over-expressed in the RA microenvironment, which supplied O2 for the photocatalytic H2S scavenging progress. On the other hand, RSV, a natural product with anti-inflammatory activity, could be delivered to the inflammatory joint by the targeting effect of PEG-FA, thus inhibiting the IκB/NF-κB pro-inflammatory pathway to induce macrophage interconversion balance from M1 to M2. As expected, the Ag/Ag2S-PEG-FA/RSV NTs exhibited H2S scavenging capacity and modulated macrophage polarization to reduce the inflammatory cytokine level and halt RA progression in vitro and in vivo. Overall, this study revealed a therapeutic strategy with high efficacy, which opens broad prospects for RA treatment.
Collapse
Affiliation(s)
- Ziqiao Ding
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping District, 300050, Tianjin, P. R. China.
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| |
Collapse
|
22
|
Hu Y, Zhao P, Liu H, Yi X, Song W, Wang X. Photocatalytic thin film composite forward osmosis membrane for mitigating organic fouling in active layer facing draw solution mode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Hui X, Wang L, Yao Z, Hao L, Sun Z. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 2022; 10:978078. [PMID: 36072702 PMCID: PMC9441816 DOI: 10.3389/fchem.2022.978078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber–Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Sun
- *Correspondence: Leiduan Hao, ; Zhenyu Sun,
| |
Collapse
|
24
|
Cai W, Cui J, Li K, Zhang Z, Xie H, Zhong Q, Qu H. Insight into the surface property modification-enhanced C 3N 4 performance of photocatalytic nitrogen fixation. Chem Commun (Camb) 2022; 58:6502-6505. [PMID: 35575204 DOI: 10.1039/d2cc01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of the catalyst have an important influence on the process of heterogeneous reactions. We modified g-C3N4 with dicarboxylic acids with different hydrophobicity. Through experiments, we found that the NH3 yields of modified carbon nitrides can reach 267.89 μmol h-1 g-1 when only dissolved nitrogen is involved. But if both dissolved nitrogen and gaseous nitrogen are present in the reaction, the NH3 yield can reach as high as 751.83 μmol h-1 g-1, demonstrating that the participation of dissolved nitrogen alone is not enough and gaseous nitrogen indeed promotes the reaction of photocatalytic nitrogen fixation. Meanwhile, the nitrogen fixation performance of the catalyst is positively correlated with its hydrophobicity, indicating that a reasonable adjustment of the catalysts' hydrophobicity can give them a certain wettability to activate water, while also providing a hydrophobic surface for insoluble gas-phase nitrogen adsorption. This provides new ideas and directions for the design of future heterogeneous reaction catalysts.
Collapse
Affiliation(s)
- Wei Cai
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Jian Cui
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Kang Li
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Zhicheng Zhang
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Huifang Xie
- Department of Environmental Science and Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Qin Zhong
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Hongxia Qu
- Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| |
Collapse
|