1
|
Feng B, Guo H, Wang X, Hu X, Li C, Guo Y, Su J, Xuan Q, Song Q. Difluorocarbene-Enabled Dehydration of Primary Amides To Access Nitriles. Org Lett 2025; 27:2992-2996. [PMID: 40091224 DOI: 10.1021/acs.orglett.5c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A cost-effective and environmentally friendly method for the direct conversion of primary amides to nitriles was developed using commercially available non-toxic ethyl bromodifluoroacetate as a difluorocarbene precursor under metal-free and ligand-free conditions. The reaction features high yields and tolerates various sensitive moieties, including alkyl, alkenyl, ether, sulfone, sulfoxide, heteroaryl, chloro, bromo, iodo, hydroxyl, nitro, and cyano groups, and late-stage modification of complex molecules is also feasible. Moreover, the present method is effective on large scales, showing potential for industrial application.
Collapse
Affiliation(s)
- Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Yu Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Wang S, Liu J, Song Q. Difluorocarbene Enables Access to 2,2-Difluorohydrobenzofurans and 2-Fluorobenzofurans from ortho-Vinylphenols. Org Lett 2024; 26:3744-3749. [PMID: 38687275 DOI: 10.1021/acs.orglett.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
2-Fluorobenzofurans are the backbone structures of many drug molecules and have many potential therapeutic bioactivities. Despite the potential applications in medicinal chemistry, practical and efficient synthetic methods for the construction of 2-fluorobenzofuran are very limited. Herein, we report an efficient and general method for the construction of 2-fluorobenzofurans. Contrary to the previous functionalizations of the existing backbone of benzofuran, our strategy directly constructs benzofuran scaffolds alongside the incorporation of fluorine atom on C2 position in a formal [4 + 1] cyclization from readily accessible ortho-vinylphenols and difluorocarbene. In our strategy, ClCF2H decomposes into difluorocarbene in the presence of base, which is further captured by the oxygen anion from the hydroxy group in ortho-hydroxychalcones; subsequent intramolecular Michael addition to the α, β-unsaturated system leads to 2,2-difluorohydrobenzofurans, and further fluorine elimination renders 2-fluorobenzofurans by forming one C-O bond and one C-C double bond. Of note, various complex 2,2-difluorohydrobenzofurans and 2-fluorobenzofurans could be readily accessed through our protocol via the late-stage elaborations.
Collapse
Affiliation(s)
- Yahao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuai Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianbo Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Cao M, Zuo D, Wang D, Li Y, Zhao J, Tan J, Li P. Palladium-Catalyzed Iodine Assisted Carbonylation of Indoles with ClCF 2CO 2Na and Alcohols. J Org Chem 2024; 89:5871-5877. [PMID: 38595315 DOI: 10.1021/acs.joc.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A palladium-catalyzed iodine-assisted carbonylation reaction of indoles with readily available ClCF2CO2Na and alcohols has been developed. This protocol provides a practical and efficient approach to highly regioselective indole-3-carboxylates via a preiodination strategy of indoles. Different from classic carbonylation using toxic and difficult-to-handle carbon monoxide, this operationally simple and scalable reaction employed difluorocarbene as the carbonyl surrogate.
Collapse
Affiliation(s)
- Mengting Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dandan Zuo
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yafei Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
4
|
Chaudhary T, Upadhyay PK, Kataria R. Anti-inflammatory and Antimicrobial Potential of 1, 3, 4-oxadiazoles and its Derivatives: A Review. Curr Org Synth 2024; 21:1014-1020. [PMID: 38037905 DOI: 10.2174/0115701794265887231014061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 12/02/2023]
Abstract
1, 3, 4-oxadiazole and its derivatives have significant anti-inflammatory and antimicrobial property. Their precise mechanism of action is not known but it is postulated that they act by inhibiting the biosynthesis of certain prostaglandins. 1, 3, 4-oxadiazoles are a class of heterocyclic compounds with wide variety of biological and pharmacological activities. They have been reported to possess analgesic, antimicrobial, antipyretic and anti-inflammatory properties. These compounds are also active against a number of other inflammatory conditions such as arthritis, gout etc. A wide variety of these compounds have been synthesized and some of them are under clinical trials. In this review article, anti-inflammatory and antimicrobial activity of the 1, 3, 4- oxadiazole shall be discussed.
Collapse
Affiliation(s)
- Tarun Chaudhary
- Department of Medicinal Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Prabhat Kumar Upadhyay
- Department of Medicinal Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Ritu Kataria
- Department of Chemistry, G.V.M College of Pharmacy, Sonipat, Haryana, 131001, India
| |
Collapse
|
5
|
Li X, Sheng H, Song Q. Rhodium-Catalyzed Intramolecular Cyclization to Synthesize 2-Aminobenzofurans via Carbene Metathesis Reactions. Org Lett 2023; 25:2113-2117. [PMID: 36940428 DOI: 10.1021/acs.orglett.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Herein, we report a new method of synthesizing of 2-aminobenzofuran 3-enes via the formal C-S insertion reaction of alkyne-tethered diazo compounds. Metal carbene, as a kind of active synthetic intermediate, plays a very important role in organic synthesis. Through the carbene/alkyne metathesis strategy, a new donor carbene is produced in situ as a key intermediate, which has different reactions from the donor receptor carbene.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
| | - Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fijian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Abstract
ConspectusFluorine-containing compounds are extensively involved in various fields originating from intriguing and unique characteristics of fluorine atom; notably, in pharmaceuticals, the involvement of a fluorine atom or a fluorine-containing group is a chief technique for improving the pesticide effect and developing new drugs. Difluorocarbene, one of the most important and powerful fluorine-containing reagents, is widely employed and studied in many areas mainly to assemble gem-difluoromethyl molecules, including but not limited to the abundant reactions between difluorocarbene with nucleophilic substrates, Wittig reaction with ketones or aldehydes, cascade reaction with both a nucleophile and an electrophile, or [2+1] cycloaddition with alkenes or alkynes. However, its unconventional and intriguing protocols beyond as a difluoromethyl synthon have rarely been studied, and thus, it is highly desired given its abundance, inexpensiveness and peculiar properties. In this Account, we mainly discuss our discovery with unconventional transformations of difluorocarbene, instead of as a sole difluoromethyl source (different from other dihalocarbene), actually can serve as an electron acceptor to activate C-X bonds (X = N and O) and thus promote a myriad of fascinating transformations for the assembly of versatile valuable products with various aza-compounds (primary/secondary/tertiary amines as well as NH3 and NaNH2 and so on) and aliphatic ethers in the absence of transition metals and expensive ligands. Inspired by the electron-deficient characteristics of difluorocarbene, we first found that the isocyanides could be readily formed in situ when the unoccupied orbital of difluorocarbene meets the lone-pair of primary amines; in basic condition, a cascade defluorination and cyclizations could afford plethora of valuable N-containing heterocycles. Meanwhile, we disclosed that cyano anion could be accessible in situ as well when difluorocarbene and NaNH2 or NH3 were mixed up in suitable basic conditions, and thus a series of aryl nitrile compounds were obtained in the presence of Pd catalysis and ArI. Interestingly, when difluorocarbene encountered secondary amines, formamides were rendered under mild reactions. Of note, concomitant functionalizations of C and N moieties via cleavage of the unstrained C(sp3)-N bond in the absence of metal and oxidant are sparce, which indeed significantly add versatility and diversity to products. Gratifyingly, by uitilizing difluorocarbene and cyclic tertiary amines, we achieved difluorocarbene-mediated deconstructive functionalizations for the first time, showing successive C(sp3)-N bond scission of amines and simultaneous functionalization of C and N atoms which would be introduced into the products in the absence of transition metals and oxidants. This method provides a brand-new while very universal synthetic pathway to selectively cleave inert unactivated Csp3-N bonds, in which halodifluoromethyl reagents act as both C1 synthon and halo (Cl, Br, I) sources. Fascinatingly, nitrogen ylides are generated in situ from difluorocarbene and tertiary amines, and an intriguing and universal approach for deaminative arylation or alkenylation of tertiary amines was disclosed for the first time in appropriate basic conditions, which represents an intriguing reaction mode to lead to a formal transition-metal free Suzuki cross coupling. Besides, we also disclosed that difluorocarbene could proceed novel atom recombination to render meaningful 2-fluoroindoles or 3-(2,2-difluoroethyl)-2-fluoroindoles from ortho-vinylanilines, 3-fluorined oxindoles from 2-aminoarylketones, in which difluorocarbene acts as a C1 synthon and F1 source simultaneously. Last but not the least, we recently found that the lone-pair-electron of oxygen could trap difluorocarbene as well to form oxonium ylide, which eventually leads to C-O bond cleavage with the formation of difluoromethyl ethers.
Collapse
|
7
|
Chen S, Huang H, Li X, Ma X, Su J, Song Q. Difluorocarbene-Enabled Synthesis of 3-Alkenyl-2-oxindoles from ortho-Aminophenylacetylenes. Org Lett 2023; 25:1178-1182. [PMID: 36757765 DOI: 10.1021/acs.orglett.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Herein, we report a transition-metal-free [4 + 1] cyclization pathway from difluorocarbene and ortho-amino aryl alkynone, rendering an effective and universal strategy for the construction of 3-alkenyl-2-oxindoles. Our strategy starts from cheap and accessible ortho-amino aryl alkynone instead of the direct indole skeleton; moreover, in situ generated difluorocarbene from commercially available halogenated difluoroalkylative reagents enables the cleavage of a C-N bond and formation of new C-N bonds and C-C bonds.
Collapse
Affiliation(s)
- Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China
| | - Hua Huang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China.,Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
8
|
Yu C, Ke F, Su J, Ma X, Li X, Song Q. Cu-Catalyzed Three-Component Cascade Synthesis of 1,3-Benzothiazines from ortho-Aminohydrazones and Bromodifluoroacetamides. Org Lett 2022; 24:7861-7865. [PMID: 36239477 DOI: 10.1021/acs.orglett.2c03399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient synthesis of benzo[d][1,3]thiazine has been developed by employing a copper-catalyzed transformation of readily available ketone-derived hydrazones with elemental sulfur and bromodifluoroalkylative reagents. The strategy involves an S8-catalyzed selective triple-cleavage of bromodifluoroacetamides, which acts as a C1 synthon at the 2-position of benzo[d][1,3]thiazine. A mechanism proceeding through a Cu-carbene intermediate is proposed for the C-S bond formation.
Collapse
Affiliation(s)
- Changjiang Yu
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Fumei Ke
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
9
|
Difluorocarbene-derived rapid late-stage trifluoromethylation of 5-iodotriazoles for the synthesis of 18F-labeled radiotracers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Lv L, Qian H, Li Z. Catalytic Diversification of gem‐Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
11
|
Zuo D, Zhang T, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Regioselective [5 + 1] Annulation of Vinyl Aziridines/Epoxides with ClCF 2COONa. Org Lett 2022; 24:4630-4634. [PMID: 35731896 DOI: 10.1021/acs.orglett.2c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-catalyzed regioselective [5 + 1] annulation reactions of vinyl aziridines/epoxides with ClCF2COONa have been developed. Significantly, vinyl aziridines/epoxides act as heteroatom-containing five-atom synthons, and commercially available and cheap ClCF2COONa acts as the source of carbonyl serving as a difluorocarbene precursor. This protocol provides an efficient and practical method for the synthesis of δ-lactams and δ-lactones in good yields.
Collapse
Affiliation(s)
- Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tao Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
12
|
Ge D, Chu XQ. Multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds: fluorine as a detachable chemical handle. Org Chem Front 2022. [DOI: 10.1039/d1qo01749g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlighted the recent advances in the field of multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Zhao L, Xu J, Ma J, Yin G, Li F, Suo T, Wang C. Formal [4+1] cyclization of (thio/imido)hydrazides and ethyl 3,3,3-trifluoropropanoate: unified synthesis of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj04147b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a unified approach to 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles with ethyl acetate decoration by treating hydrazides, thiohydrazides and imidohydrazide with ethyl 3,3,3-trifluoropropanoate in the presence of a suitable base.
Collapse
Affiliation(s)
- Lan Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Ma
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, P. R. China
| |
Collapse
|
14
|
Wang S, Li X, Jin S, Liu K, Dong C, Su J, Song Q. Difluorocarbene-enabled access to 1,3-oxazin-6-ones from enamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01899j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-Oxazin-6-ones as important structural scaffolds widely exist in many bioactive or therapeutic agents.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Cong Dong
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
15
|
Sheng H, Su J, Li X, Li X, Song Q. Double Capture of Difluorocarbene by 2-Aminostyrenes Enables the Construction of 3-(2,2-Difluoroethyl)-2-fluoroindoles. Org Lett 2021; 23:7781-7786. [PMID: 34617770 DOI: 10.1021/acs.orglett.1c02816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein an efficient strategy to construct 3-(2,2-difluoroethyl)-2-fluoroindoles from activated o-aminostyrenes with ethyl bromodi-fluoroacetate as a difluorocarbene source. Through double capture of a difluorocarbene, two different types of fluorine motifs are incorporated into the products with simultaneous construction of one C-N and two C-C bonds, without the need for transition metals. This reaction features high efficiency and excellent functional group compatibility and has great potential in the late-stage modifications of pharmaceutical molecules and natural products.
Collapse
Affiliation(s)
- Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|