1
|
Huang X, Gao J, Qin Y, Du D, Liu R, Shi Y, Wang C, Zhang Z, Zhang J, Sun J, Li T, Yin L, Wang R. Revealing the Effect of the Microstructure on Potassium Storage Behavior in a Two-Dimensional Mesoporous Carbon Anode. ACS NANO 2024. [PMID: 39088247 DOI: 10.1021/acsnano.4c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hard carbon is considered as the most promising anode material for potassium-ion energy storage devices. Substantial progress has been made in exploring advanced hard carbons to solve the issues of sluggish kinetics and large volume changes caused by the large radius of K+. However, the relationship between their complicated microstructures and the K+ charge storage behavior is still not fully explored. Herein, a series of two-dimensional mesoporous carbon microcoins (2D-MCMs) with tunable microstructures in heteroatom content and graphitization degree are synthesized by a facile hard-template method and follow a temperature-controllable annealing process. It is found that high heteroatom content makes for surface-driven K+ storage behavior, which increases the capacity-contribution ratio from a high potential region, while a high graphitization degree makes for K+ intercalation behavior, which increases the capacity-contribution ratio from a low potential region. Electrochemical results from a three-electrode Swagelok cell demonstrate that a 2D-MCM anode with more capacity contribution from a low working region allows the porous carbon cathode to be operated in a much wider electrochemical window, thus storing more charge. As a result, potassium-ion capacitors based on the optimized 2D-MCM anode deliver a high energy density of 113 Wh kg-1 and an exhilarating power density of 51,000 W kg-1.
Collapse
Affiliation(s)
- Xinli Huang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuying Qin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Danni Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Renbo Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuanchang Shi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinfeng Sun
- School of Material Science & Engineering, University of Jinan, Jinan 250024, China
| | - Tao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| |
Collapse
|
2
|
Chen C, Pei C, Yang S, Ma H, Zhang D, Sun B, Ni S. Heterostructured Li 3VO 4-Ga 2O 3-embedded porous carbon nanofibers as advanced anode materials for lithium-ion batteries. Phys Chem Chem Phys 2023; 25:24789-24796. [PMID: 37671644 DOI: 10.1039/d3cp03370h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The development of lithium-ion batteries (LIBs) is still facing challenges due to the design and optimization of anode materials and their Li-ion storage mechanisms. In this study, we aimed to address this issue by constructing three-dimensional hierarchical heterojunction structures using a double needle electrospinning strategy. The heterostructure was composed of insertion-type Li3VO4 and conversion/alloying-type Ga2O3 embedded porous carbon nanofibers (Li3VO4-Ga2O3@PCNF). The designed heterostructured Ga2O3 and Li3VO4 materials were found to effectively enhance charge transfer dynamics, thereby improving capacity and rate capability. Additionally, the facilitated efficient contact between the electrode and electrolyte, enabling the diffusion of ions and electrons. When applied as an anode material in LIBs, the Li3VO4-Ga2O3@PCNF composite achieved a high capacity of 630.0 mA h g-1 at 0.5 A g-1, and full capacity recovery after 6 periods of rate testing over 480 cycles. When simulating the practical application under a high discharge current of 6.0 A g-1, the Li3VO4-Ga2O3@PCNF could still deliver a high discharge capacity of 322.0 mA h g-1 after 2000 cycles. Furthermore, the composite exhibited a remarkable capacity retention of 77.2% after 2000 cycles at 6.0 A g-1. This research provides valuable guidance for the design of high-performance Li3VO4-based anodes, particularly in addressing the issue of inferior electronic conductivity.
Collapse
Affiliation(s)
- Canyang Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| | - Cunyuan Pei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| | - Song Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| | - Huijuan Ma
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Dongmei Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| | - Bing Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| | - Shibing Ni
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
3
|
Kadhim MM, Sadoon N, Abbas ZS, Hachim SK, Abdullaha SAH, Rheima AM. Exploring the role of 2D-C 2N monolayers in potassium ion batteries. J Mol Model 2023; 29:139. [PMID: 37055601 DOI: 10.1007/s00894-023-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
CONTEXT In recent years, undivided attention has been given to the unique properties of layered nitrogenated holey graphene (C2N) monolayers (C2NMLs), which have widespread applications (e.g., in catalysis and metal-ion batteries). Nevertheless, the scarcity and impurity of C2NMLs in experiments and the ineffective technique of adsorbing a single atom on the surface of C2NMLs have significantly limited their investigation and thus their development. Within this research study, we proposed a novel model, i.e., atom pair adsorption, to inspect the potential use of a C2NML anode material for KIBs through first-principles (DFT) computations. The maximum theoretical capacity of K ions reached 2397 mA h g-1, which was greater in contrast with that of graphite. The results of Bader charge analysis and charge density difference revealed the creation of channels between K atoms and the C2NML for electron transport, which increased the interactions between them. The fast process of charge and discharge in the battery was due to the metallicity of the complex of C2NML/K ions and because the diffusion barrier of K ions on the C2NML was low. Moreover, the C2NML has the advantages of great cycling stability and low open-circuit voltage (approximately 0.423 V). The current work can provide useful insights into the design of energy storage materials with high efficiency. METHODS In this research, we used B3LYP-D3 functional and 6-31 + G* basis with GAMESS program to calculate adsorption energy, open-circuit voltage, and maximum theoretical capacity of K ions on the C2NML.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq.
| | - Nasier Sadoon
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | | | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|