1
|
Ren Y, Zhou Y, Wang KH, Wang J, Huang D, Hu Y. Visible-Light-Induced Trifluoromethyl Radical Addition to Thiocarbonyl of Thioamide Derivatives. J Org Chem 2025; 90:3739-3744. [PMID: 40020186 DOI: 10.1021/acs.joc.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
An effective trifluoromethyl radical addition to the thiocarbonyl of thioamide derivatives is described, which produces various trifluoromethylthiolated N-heterocycles such as 6-(trifluoromethylthio)phenanthridine, 2-(trifluoromethylthio)indole, and 2-(trifluoromethylthio)benzothiazole derivatives under visible-light irradiation. The process features advantages such as mild reaction conditions, a cheap and easily available trifluoromethyl source (CF3Br), and green energy, as well as broad substrate scope. The reaction mechanism is investigated in detail, and scale-up experiments are performed.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yuxiu Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Hong Y, Xu J, Chen A, Du Y, Wang G, Shen J, Zhang P. Visible-Light-Induced Divergent C-H Esterification/Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes under Mild Conditions. Org Lett 2025; 27:2526-2531. [PMID: 40041943 DOI: 10.1021/acs.orglett.5c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Herein, we introduce an efficient and straightforward strategy for the selective C-H esterification and alkylation of quinoxalin-2(1H)-ones with aldehydes. A key feature of our study is the ability to perform both C-H esterification and alkylation using different types of aldehydes. The reaction system is highly compatible with a range of quinoxalin-2(1H)-ones and aldehydes, yielding C3-esterified and C3-alkylated products in moderate-to-good yields. The applicability of this approach is further enhanced by its scalability through continuous-flow synthesis, late-stage modification of significant molecules, and product derivatization. Our mechanistic investigations reveal a radical relay mechanism, triggered by a hydrogen atom transfer process.
Collapse
Affiliation(s)
- Yu Hong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - An Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Yating Du
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Guangze Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Liang Z, Wang W, Wang S. TBHP-Promoted Trifluoromethyl-difluoromethylthiolation of Unactivated Alkenes with CF 3SO 2Na and PhSO 2SCF 2H. Org Lett 2025; 27:2123-2127. [PMID: 39996505 DOI: 10.1021/acs.orglett.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
A TBHP-promoted trifluoromethyl-difluoromethylthiolation of alkenes was reported. Langlois' reagent was used as a stable and inexpensive trifluoromethyl source. In the presence of TBHP, the trifluoromethyl radical generated reacted with alkenes, achieving a new alkyl radical, which could be trapped by PhSO2SCF2H, forming C-C and C-S bonds in one step and incorporating trifluoromethyl and difluoromethylthio groups. The mild conditions and broad functional group tolerance endowed the reaction with great potential in the field of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Zengrui Liang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| |
Collapse
|
4
|
Li J, Wang W, Wang S. An Intramolecular Minisci Reaction in Aqueous Media Using Langlois' Reagent. J Org Chem 2025; 90:2577-2591. [PMID: 39925246 DOI: 10.1021/acs.joc.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
A trifluoromethylpyridylation of unactivated alkenes in aqueous solution under open air is reported. This process allows the incorporation of trifluoromethyl and the construction of pyridines annulated to saturated cycles via an intramolecular Minisci reaction using Langlois' reagent (CF3SO2Na) as a trifluoromethyl source. Extrusion of air from the reaction is not required. A broad functional group tolerance is observed. A series of five-, six-, and seven-membered cycles are obtained, exhibiting great potential application in the preparation of diversified pyridines.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, Jinan 250022, P. R. China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, Jinan 250022, P. R. China
| |
Collapse
|
5
|
Hu D, Dang H, Liang Z, Wang D, Du Y, Shen C, Shen J, Wang M. Visible-Light-Mediated Nucleophilic Addition of Alkene with Aldehyde: Synthesis of Secondary Alcohols. Org Lett 2024; 26:10797-10802. [PMID: 39658526 DOI: 10.1021/acs.orglett.4c03819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Herein, a photocatalytic strategy for the synthesis of secondary alcohols by nucleophilic addition of an alkene with an aldehyde is described. This operationally simple methodology opens an approach for the synthesis of alcohols using commercially available reagents in moderate to excellent yields. Mechanistic studies indicate that the formation of the radical anion from alkene via single-electron transfer is the key step in this reaction.
Collapse
Affiliation(s)
- Du Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Haowen Dang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhen Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Donghao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yunyun Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Min Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
6
|
He C, Wang Q, Zhou X, Yi L, Zhang Z, Zhang C, Xie H, Huang Q, Qiu G, Yang M. Photocatalytic Cyclization Cascades by Radical Relay toward Pyrrolo[1,2- a]indoles: Synthesis, Mechanism, and Application. J Org Chem 2024; 89:3509-3524. [PMID: 38362658 DOI: 10.1021/acs.joc.3c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photocatalytic annulation cascade of unactivated N-alkene-linked indoles with Langlois' reagent by a radical relay is developed at room temperature under blue LED irradiation. The reaction afforded a series of tri/difluoromethylated pyrrolo[1,2-a]indoles in moderate to good yields. The DFT study suggests that the reaction is ascribed to a rhodamine 6G-induced cyclization cascade involving vinyl addition-radical relay and hydrogen-atom-abstraction (HAA) processes, and interestingly, pyrrolo[1,2-a]indoles are applied as fluorescent dyes into the fluorescence spectrum and live-cell imaging. This paper represents an initial example on photocatalytic cyclization cascades by radical relay and the HAA process.
Collapse
Affiliation(s)
- Chen He
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Qi Wang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Xiaoyang Zhou
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Lin Yi
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Zhiqiang Zhang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Qitong Huang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001 Zhejiang, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|
7
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
8
|
Tang Y, Huang M, Jiang L, Zhang X, Zheng S, Yang Y, Chen XY. Visible-Light-Irradiated Multicomponent Reactions of Aliphatic Amines, Propiolate Acid Esters, and CF 3 SO 2 Na for Accessing β-CF 3 Enamines. Chemistry 2023; 29:e202302249. [PMID: 37572319 DOI: 10.1002/chem.202302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
A novel one-pot two-step multicomponent reaction has been achieved for the preparation of β-CF3 enamines by using different aliphatic amines, propiolates, and CF3 SO2 Na as starting material. In this protocol, various aliphatic amines including primary amines, cyclic or acyclic secondary amines were demonstrated to be good coupling partners, and different β-CF3 enamines were obtained in moderate to good yields. Among them, the primary aliphatic amines only gave pure (E)-β-CF3 enamines as products. The synthetic utility of the MCRs strategy was further demonstrated by mild conditions, gram-scale synthesis and natural sunlight-induced protocol. Preliminary mechanistic studies suggest that this trifluoromethylation of C(sp2 )-H involves radical process.
Collapse
Affiliation(s)
- Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Mingyang Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Liang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiaotong Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yong Yang
- College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 320500, P. R. China
| | - Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| |
Collapse
|
9
|
Struwe J, Ackermann L. Photoelectrocatalyzed undirected C-H trifluoromethylation of arenes: catalyst evaluation and scope. Faraday Discuss 2023; 247:79-86. [PMID: 37466161 DOI: 10.1039/d3fd00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
During the last few years, photoelectrocatalysis has evolved as an increasingly viable tool for molecular synthesis. Despite several recent reports on the undirected C-H functionalization of arenes, thus far, a detailed comparison of different catalysts is still missing. To address this, more than a dozen different mediators were employed in the trifluoromethylation of (hetero-)arenes to compare them in their efficacies.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
10
|
Hu X, Tao M, Gong K, Feng Q, Hu X, Li Y, Sun S, Liang D. Electrochemical or Photoelectrochemical Alkenylpolyfluoroalkylation of 3-Aza-1,5-dienes: Regioselective Entry to Polyfluoroalkylated 4-Pyrrolin-2-ones. J Org Chem 2023; 88:12935-12948. [PMID: 37673796 DOI: 10.1021/acs.joc.3c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.
Collapse
Affiliation(s)
- Xi Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Minglin Tao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Kaixing Gong
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Qin Feng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiao Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
11
|
Mkrtchyan S, Shkoor M, Sarfaraz S, Ayub K, Iaroshenko VO. Mechanochemical arylative detrifluoromethylation of trifluoromethylarenes. Org Biomol Chem 2023; 21:6549-6555. [PMID: 37523214 DOI: 10.1039/d3ob00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| |
Collapse
|
12
|
Firuz ME, Rajai-Daryasarei S, Rominger F, Biglari A, Balalaie S. Mn-Mediated Direct Regioselective C-H Trifluoromethylation of Imidazopyridines and Quinoxalines. J Org Chem 2023. [PMID: 37471701 DOI: 10.1021/acs.joc.3c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A simple and highly efficient strategy has been developed for direct C-H trifluoromethylation at C-3 of imidazopyridines and C-8 of quinoxalines with readily available Langlois reagent through KMnO4/AcOH system. This protocol showed broad substrate scope and afforded moderate-to-excellent yields of both products. It is the first report that the functionalization of quinoxalines occurred regioselectively at the C-8 position of quinoxalines. Mechanistic studies revealed that reaction proceeded via radical pathway.
Collapse
Affiliation(s)
- Mahdieh Esi Firuz
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg 69120, Germany
| | - Abbas Biglari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
13
|
Shen J, Yue X, Xu J, Li W. α-Amino Radical-Mediated Difunctionalization of Alkenes with Polyhaloalkanes and N-Heteroarenes. Org Lett 2023; 25:1994-1998. [PMID: 36920106 DOI: 10.1021/acs.orglett.3c00647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Herein, we report a mild and practical protocol for the α-perchloroalkyl β-heteroarylation of alkenes using available chloroform as the dichloromethyl source via α-amino radical-mediated halogen-atom transfer. Various substrates are compatible under mild reaction conditions, providing the corresponding products in moderate to good yields. This strategy gives an efficient and convenient method for the introduction of chloroalkyl motifs into N-heteroarenes. The control experiment demonstrates that the α-amino radical generated in situ is a key intermediate in the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Xiaoguang Yue
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
14
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Ko N, Min J, Moon J, Ismail NF, Moon K, Singh P, Mishra NK, Lee W, Kim IS. Rhodium(III)-Catalyzed Conjugate Addition of β-CF 3-Enones with Quinoline N-Oxides. J Org Chem 2023; 88:602-612. [PMID: 36524705 DOI: 10.1021/acs.joc.2c02659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The site-selective incorporation of a trifluoromethyl group into biologically active molecules and pharmaceuticals has emerged as a central topic in medicinal chemistry and drug discovery. Herein, we demonstrate the rhodium(III)-catalyzed conjugate addition of β-trifluoromethylated enones with quinoline N-oxides, which result in the generation of β-trifluoromethyl-β'-quinolinated ketones. The reaction proceeds under mild conditions with complete functional group tolerance. The synthetic applicability was showcased by successful gram-scale experiments and valuable synthetic transformations of coupling products.
Collapse
Affiliation(s)
- Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeonghyun Min
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nuraimi Farwizah Ismail
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,PAPRSB, Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Zheng P, Liu C, Zeng Q, Zhang Y, Liu Y, He J, Deng Y, Cao S. Fe-catalyzed hydroxytrifluoromethylation of α-(trifluoromethyl)styrenes with CF 3SO 2Na: facile access to α,β-bistrifluoromethyl tertiary alcohols. Org Biomol Chem 2022; 20:9302-9306. [PMID: 36399128 DOI: 10.1039/d2ob02035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mild and practical Fe-catalyzed hydroxytrifluoromethylation of α-(trifluoromethyl)styrenes with CF3SO2Na in the presence of K2S2O8 and air was developed. The reaction proceeded efficiently at room temperature without β-fluoride elimination and afforded the corresponding α,β-bistrifluoromethyl tertiary alcohols in good to excellent yields.
Collapse
Affiliation(s)
- Pai Zheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Chuan Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Qianding Zeng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Ying Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
18
|
Ma R, Ren Y, Deng Z, Wang KH, Wang J, Huang D, Hu Y, Lv X. Visible Light Promotes Cascade Trifluoromethylation/Cyclization, Leading to Trifluoromethylated Polycyclic Quinazolinones, Benzimidazoles and Indoles. Molecules 2022; 27:molecules27238389. [PMID: 36500485 PMCID: PMC9737949 DOI: 10.3390/molecules27238389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Efficient visible-light-induced radical cascade trifluoromethylation/cyclization of inactivated alkenes with CF3Br, which is a nonhygroscopic, noncorrosive, cheap and industrially abundant chemical, was developed in this work, producing trifluoromethyl polycyclic quinazolinones, benzimidazoles and indoles under mild reaction conditions. The method features wide functional group compatibility and a broad substrate scope, offering a facile strategy to pharmaceutically produce valuable CF3-containing polycyclic aza-heterocycles.
Collapse
Affiliation(s)
- Ransong Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| | - Xiaobo Lv
- Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321, China
| |
Collapse
|
19
|
Dong L, Wang X, Nie Y, Yu S, Li H, Zhao Q, Fan Z, Wang Y, Tan X, Yu Z. Regioselective Perfluoroalkylation of 4‐Quinolones Using Sodium Perfluoroalkyl Sulfinates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li Dong
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Xiaoqing Wang
- College of Science Hebei Agriculture University Baoding Hebei 071000 China
| | - Yudi Nie
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Shuo Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Haotong Li
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Qian Zhao
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zixuan Fan
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Yuqian Wang
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Xiaoting Tan
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zhengsen Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| |
Collapse
|
20
|
Visible light-induced hydroxymethylation and formylation of (iso)quinolines with alcohols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang L, Zheng K, Zhang P, Jiang M, Shen J, Chen C, Shen C. Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin-2(1H)-ones without external photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
22
|
Ma C, Meng H, He X, Jiang Y, Yu B. Visible-Light-Promoted Transition-Metal-Free Construction of 3-Perfluoroalkylated Thioflavones. Front Chem 2022; 10:953978. [PMID: 35910726 PMCID: PMC9326344 DOI: 10.3389/fchem.2022.953978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
A visible-light-promoted transition-metal-free perfluoroalkylation/cyclization reaction was developed with 9-mesityl-10-methylacridinium perchlorate (Acr+-Mes·ClO4−) as the photocatalyst, by which various perfluoroalkyl-substituted heterocycles including thioflavones, oxindoles, and quinoline-2,4(1H,3H)-diones were prepared at room temperature. Moreover, the potential of this sustainable method is demonstrated by the excellent in vitro anti-lymphoma and cervical carcinoma activity of the novel 3-perfluoroalkylated thioflavone 3m.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Yuqin Jiang, ; Bing Yu,
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuqin Jiang, ; Bing Yu,
| |
Collapse
|
23
|
Shen J, Wang Z, Zhang Y, Xu J, Liu X, Shen C, Zhang P. Selective Mono- and Diamination of Ketones in a Combined Copper-Organocatalyst System. Org Lett 2022; 24:3614-3619. [PMID: 35549495 DOI: 10.1021/acs.orglett.2c01140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report a simple and mild protocol for the chemoselective mono- and diamination of ketone using pyrazole as the amine source in a combined copper-organocatalyst system. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy gives an efficient and convenient solution for the synthesis of α-pyrazole and α,α-dipyrazole ketone derivatives. The control experiment demonstrates that in situ generated hydrazone is a key intermediate in the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Zhihao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Yuru Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Jun Xu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
24
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
25
|
Ouyang YN, Yue X, Peng J, Zhu J, Shen Q, Li W. Organic-acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Org Biomol Chem 2022; 20:6619-6629. [DOI: 10.1039/d2ob01187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free method for the Minisci-type arylation of heterocycles with aryl acyl peroxides has been reported. This strategy enables the rapid and simple synthesis of a series of Minisci-type adducts...
Collapse
|
26
|
Yuan X, Si YF, Li X, Wu S, Zeng FL, Lv QY, Yu B. Decatungstate-Photocatalyzed Direct Coupling of Inert Alkanes and Quinoxalin-2(1H)-ones with H2 Evolution. Org Chem Front 2022. [DOI: 10.1039/d1qo01894a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetrabutylammonium decatungstate (TBADT)-photocatalyzed direct coupling of inert alkanes and quinoxalin-2(1H)-ones with H2 evolution was developed at room temperature. The present transformation achieved the direct C(sp3)-H/C(sp2)-H coupling under noble metal-free,...
Collapse
|
27
|
Sun B, Tian H, Ni Z, Huang P, Ding H, Li B, Jin C, Wu C, Shen RP. Photocatalyst-, metal- and additive-free, regioselective radical cascade sulfonylation/cyclization of benzimidazoles derivatives with sulfonyl chlorides induced by visible light. Org Chem Front 2022. [DOI: 10.1039/d2qo00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an environmental and practical protocol for the visible-light-triggered regioselective radical cascade sulfonylation/cyclization of unactivated alkenes towards synthesis of polycyclic benzimidazoles containing sulfone group has been developed. Notably, the control...
Collapse
|
28
|
Niwetmarin W, Saruengkhanphasit R, Eurtivong C, Ruchirawat S. Visible-light-mediated decarboxylative alkylation of 2-pyridone derivatives via a C3-selective C-H functionalization. Org Biomol Chem 2021; 19:9231-9236. [PMID: 34647954 DOI: 10.1039/d1ob01829a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A direct C-H functionalization approach to access C3-alkylated 2-pyridone derivatives is reported. This study utilizes N-hydroxyphthalimide (NHPI) esters of various carboxylic acids as sources of alkyl radicals by reductive cleavage under photocatalytic reaction conditions. The carbon-carbon bond formation occurred site-selectively at C3 of 2-pyridone to give the desired products in moderate to good yields. This method enables a faster access to C3-alkylated pyridone compounds which can be applied to the synthesis of small molecule drugs.
Collapse
Affiliation(s)
- Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand. .,The Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand. .,The Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
29
|
Shen J, Jiang X, Wu H, Xu J, Zhu Q, Zhang P. Copper-catalyzed selective oxidation of hydrazones through C(sp 3)-H functionalization. Org Biomol Chem 2021; 19:8917-8923. [PMID: 34617555 DOI: 10.1039/d1ob01563j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and mild protocol for copper-catalyzed oxidation of hydrazones at the α-position has been reported. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy provides an efficient and convenient solution for the synthesis of carbonyl hydrazone. A free radical pathway mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China. .,College of Chemistry and Chemical Engineering, Central south University, Changsha, 410083, P.R. China
| | - Haifeng Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|