1
|
Li H, Song X, Zhang N, Chu K, Zhao J. Construction of dual sites on FeS 2 surface for enhanced electrocatalytic reduction of nitrite to ammonia. J Colloid Interface Sci 2025; 678:242-250. [PMID: 39298975 DOI: 10.1016/j.jcis.2024.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cost-effective iron sulfides (FeS2) hold great potential as high-performance catalysts for NO2- electroreduction to NH3 (NO2ER), which is hindered by the weak NO2 activation. Herein, the design of nonmetal-doped FeS2 electrocatalysts was initially conducted by density functional theory (DFT) computations. We found that doping with different nonmetal atoms effectively not only regulates the electronic structures of the d-electrons of Fe atoms but also creates the unique p-d hybridized dual active sites, thereby boosting the efficient NO2 activation. Owing to the optimal NO2 adsorption strength, N-doped FeS2 demonstrates a low limiting potential for the NO2--to-NH3 conversion, thus significantly improving NO2ER activity. Direct experimental evidence was provided afterward: an NH3 yield rate of 424.5 μmol/hcm-2 with a 92.4 % Faradaic efficiency was achieved. Our findings not only suggest a promising NO2ER catalyst through theoretical computations to guide experiments but also provide a comprehensive understanding of the structure-properties relationship.
Collapse
Affiliation(s)
- Heying Li
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Xueshi Song
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Ma LJ, Zhang W, Wang J, Jia J, Wu HS. Supported Cu 3 cluster on N-doped graphene: An efficient triatom catalyst for CO electroreduction to propanol at low potential. J Colloid Interface Sci 2025; 678:1239-1248. [PMID: 39348791 DOI: 10.1016/j.jcis.2024.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Electroreduction of carbon monoxide into high-energy fuel is an excellent energy strategy for sustainable development, but the high yield of multi-carbon products remains a difficult challenge. Inspired by the successful synthesis of various trimer metal clusters and studies on electrocatalysis of CO to C3 products by Cu-based catalysts, Cu3 supported on N-doped graphene structures (Cu3@NG) are investigated as electrocatalysts for CORR toward propanol in this paper. Due to the appropriate Cu-Cu bond length, the moderate charge of the Cu site, mild CO adsorption energy, and 100 % CO coverage, the absorbed 3*CO substance can form the critical *CO-CO-CO intermediate with a rather low kinetic barrier of 0.25 eV. The limiting potential of the whole process for the formation of propanol is just -0.15 V. Our work not only showed that Cu3@NG is an excellent catalyst for the formation of propanol with high selectivity at low potential but also indicated that the *CO coverage can greatly reduce the CO hydrogenation potential and bonding of some intermediates such as *CH2O. This research will provide a new idea for the material design of products tending to multi-carbon.
Collapse
Affiliation(s)
- Li-Juan Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Wenlu Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Hai-Shun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| |
Collapse
|
3
|
Luo Y, Ma Z, Xia X, Zhong J, Wu P, Huang Y. TM 2 -B 2 Quadruple Active Sites Supported on a Defective C 3 N Monolayer as Catalyst for the Electrochemical CO 2 Reduction: A Theoretical Perspective. CHEMSUSCHEM 2023; 16:e202202209. [PMID: 36571161 DOI: 10.1002/cssc.202202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance electrocatalysts for the CO2 reduction reaction (CO2 RR) holds great potential to mitigate the depletion of fossil feedstocks and abate the emission of CO2 . In this contribution, using density functional theory calculations, we systematically investigated the CO2 RR performance catalyzed by TM2 -B2 (TM=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) supported on a defective C3 N monolayer (V-C3 N). Through the screening in terms of stability of catalyst, activity towards CO2 adsorption, and selectivity against hydrogen evolution reaction, Mn2 -, Fe2 -, Co2 -, and Ni2 -B2 @V-C3 N were demonstrated to be a highly promising CO2 RR electrocatalyst. Due to quadruple active sites, these candidates can adsorb two or three CO2 molecules. Strikingly, different products, distributing from C1 to C2+ , can be generated. The high activity originates from the synergistic effect of TM and B atoms, in which they serve as adsorption sites for the C- and O-species, respectively. The high selectivity towards C2+ products at the Fe2 -, and Ni2 -B2 sites stems from moderate C adsorption strength but relatively weak O adsorption strength, in which a universal descriptor, that is, 0.6 ΔEC -0.4 ΔEO =-1.77 eV (ΔEC /ΔEO is the adsorption energy of C/O), was proposed. This work would offer a novel perspective for the design of high active electrocatalysts towards CO2 RR and for the synthesis of C2+ compounds.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Zengying Ma
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Junwen Zhong
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Peng Wu
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| |
Collapse
|
4
|
Xie J, Xu W, Shu Y, Xu M, Xu J, Cao Z, Huang T, Li Y, Dong H. Computational insight into electro-catalytic reduction of carbon monoxide by two-dimensional metal-embedded poly-phthalocyanine. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Wang G, Chen Z, Wang T, Wang D, Mao J. P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO
2
Reduction to Hydrocarbon Fuels with High C
2
H
6
Evolution. Angew Chem Int Ed Engl 2022; 61:e202210789. [DOI: 10.1002/anie.202210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Gang Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
6
|
Wang G, Chen Z, Wang T, Wang D, Mao J. P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO2 Reduction to Hydrocarbon Fuels with High C2H6 Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Wang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Zhe Chen
- Westlake University School of Science CHINA
| | - Tao Wang
- Westlake University School of Science CHINA
| | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| | - Junjie Mao
- Anhui Normal University College of Chemistry and Materials Science CHINA
| |
Collapse
|
7
|
Qin Z, Wang Z, Zhao J. Computational screening of single-atom catalysts supported by VS 2 monolayers for electrocatalytic oxygen reduction/evolution reactions. NANOSCALE 2022; 14:6902-6911. [PMID: 35446333 DOI: 10.1039/d2nr01671k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of highly efficient bifunctional electrocatalysts to boost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desirable for energy conversion and storage devices. Herein, by means of comprehensive first-principles computations, we systematically explored the catalytic activities of a series of single transition metal atoms anchored on two-dimensional VS2 monolayers (TM@VS2) for ORR/OER. Our results revealed that Ni@VS2 exhibits low overpotentials for both ORR (0.45 V) and OER (0.31 V), suggesting its great potential as a bifunctional catalyst, which is mainly induced by its moderate interaction with oxygenated intermediates according to the established scaling relationship and volcano plot. Interestingly, the substituted doping of nitrogen heteroatoms into the VS2 substrate can further effectively improve the ORR/OER activity of the active metal atom to achieve more eligible ORR/OER bifunctional catalysts. Our results not only propose a new class of potential bifunctional oxygen catalysts but also offer a feasible strategy for further tuning their catalytic activity.
Collapse
Affiliation(s)
- Zengming Qin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Zhongxu Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| |
Collapse
|