1
|
Yu J, Usman M, Liu F, Schäfer F, Shen Y, Zheng Z, Cai Y. CO 2 agitation combined with magnetized biochar to alleviate "ammonia inhibited steady-state": Exploring the mechanism by combining metagenomics with macroscopic indicators. WATER RESEARCH 2025; 276:123250. [PMID: 39946947 DOI: 10.1016/j.watres.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The "ammonia inhibited steady-state" phenomenon is frequently observed in the anaerobic digestion (AD) process of nitrogen-rich substrates. Reconfiguring microbial ecosystems has proven to be an effective strategy for mitigating ammonia inhibition. In the current study, biochars were screened and targeted for modification. CO2 agitation combined with magnetized biochar was used to aid the semi-continuous AD systems with "ammonia inhibited steady-state." The results indicated that coconut shell biochar had the best stimulating effect on AD performance. The content of oxygen-containing functional groups (OCFGs), which had a positive correlation with the electron donating capacity (EDC), was targeted to be regulated. This strategy significantly increased the CH4 yield by 31.7 % (from 344 to 278 mL/g VS) (p < 0.05). Isotope tracing and KEGG gene annotation indicated that this strategy stimulated the efficiency of the hydrogenotrophic pathway. Simultaneously, it accelerated the attachment of microorganisms, which made the DIET pathway between bacteria and archaea efficient. Under CO2 agitation, the attachment of functional microorganisms to the biochar accelerated. Biochar weakened the synthesis of bioelectronic carriers (Cyt-c and chemosensory pili), while the electroactivity of the AD system was enhanced. This means that biochar replaced bioelectronic carriers and improved the DIET efficiency. In addition, the strategy had a positive effect on the colonization of simultaneous nitrification-denitrifying bacteria (Georgenia), which led to a decrease in ammonia nitrogen concentrations. This study revealed the mechanism by which this strategy alleviates ammonia inhibition and provided a promising strategy for the efficient AD of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Jiadong Yu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6 G 2W2, Canada
| | - Fan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Franziska Schäfer
- Department of Biochemical Conversion, Deutsches Biomassforschungszentrum gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Yuhan Shen
- Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Qiao C, Jia W, Tang J, Chen C, Wu Y, Liang Y, Du J, Wu Q, Feng X, Wang H, Guo WQ. Advances of carbon-based materials for activating peracetic acid in advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2024; 263:120058. [PMID: 39326650 DOI: 10.1016/j.envres.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.
Collapse
Affiliation(s)
- Chenghuan Qiao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, South Korea
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Li R, Zhang C, Hui J, Shen T, Zhang Y. The application of P-modified biochar in wastewater remediation: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170198. [PMID: 38278277 DOI: 10.1016/j.scitotenv.2024.170198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jing Hui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tieheng Shen
- Heilongjiang Agricultural Technology Promotion Station, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Khumalo SPG, Lokhat D, Sewpersad A. Preparation and Use of Iron on Carbon Foam for Removal of Organic Dye from Water: Batch Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6350. [PMID: 37834487 PMCID: PMC10573314 DOI: 10.3390/ma16196350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The presence of dyes in effluents from textile industries has a detrimental effect on aquatic ecosystems as it hinders the process of photosynthesis by reducing the penetration of sunlight. The adsorption capacity of a carbon foam-based iron oxide sorbent obtained from natural sources for the removal of organic methylene blue (MB) dye from water was investigated. The adsorption capacities were examined by batch experiments, wherein the impacts of varying iron content, sorbent dosage, contact time, dye concentration, and characterization were assessed. The physical characteristics and surface morphology of the synthesized carbon foam were also investigated. The carbon precursor and iron oxide precursor were coalesced within a singular container and subjected to carbonization process. This resulted in the formation of a porous structure that is capable of effectively providing support to the iron oxide particles. The carbon foam produced is a self-assembled formation that possesses the characteristic shape and underlying network structure reminiscent of bread. As the number of nanoparticles went up, so did the number of active sites. At elevated temperatures, the interactions between the dye molecules were enhanced, resulting in a more efficient process of dye removal. The magnetite sample exhibited endothermic adsorption, and all other samples exhibited exothermic adsorption. The adsorption of MB onto iron supported by carbon foam did not exhibit intraparticle diffusion as the only rate-limiting step for all samples. The adsorption rate was governed by a multistep elementary reaction mechanism in which multiple processes occurred simultaneously. The experimental data in this study may be accurately modeled by the pseudo-second-order kinetic model (R2 > 0.96). Additionally, the Freundlich isotherm best describes the adsorption equilibrium, which is supported by the outstanding fit of data to the model (R2 > 0.999). The findings suggest that the utilization of a natural carbon foam as a support for an immobilized iron oxide sorbent demonstrates considerable effectiveness in the removal of methylene dye from industrial effluent.
Collapse
Affiliation(s)
- Siphesihle Praise-God Khumalo
- School of Engineering, Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa; (D.L.); (A.S.)
| | | | | |
Collapse
|
5
|
Bagheri Novair S, Cheraghi M, Faramarzi F, Asgari Lajayer B, Senapathi V, Astatkie T, Price GW. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115228. [PMID: 37423198 DOI: 10.1016/j.ecoenv.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.
Collapse
Affiliation(s)
- Sepideh Bagheri Novair
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Meysam Cheraghi
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Farzaneh Faramarzi
- Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
6
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
7
|
Li J, Pan L, Li Z, Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163895. [PMID: 37146809 DOI: 10.1016/j.scitotenv.2023.163895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) in biochar derived from pyrolysis of sludge or manure is the main issue for its large-scale application in soils for carbon sequestration. However, there is a paucity of efficient approaches to predict and comprehend the HM migration during pyrolysis for preparing low HM-contained biochar. Herein, the data on the feedstock information (FI), additive, total concentration of feedstock (FTC) of HM Cr and Cd, and pyrolysis condition, were extracted from the literature, to predict total concentration (TC) and retention rate (RR) of Cr and Cd in sludge/manure biochar using ML for mapping their migration during pyrolysis. Two datasets for Cr and Cd were compiled with 388 and 292 data points from 48 and 37 peer-review papers. The results indicated that the TC and RR of Cr and Cd could be predicted by the Random Forest model with test R2 of 0.74-0.98. Their TC and RR in biochar were dominated by the FTC and FI, respectively; while pyrolysis temperature was the most important to Cd RR. Moreover, potassium-based inorganic additives decreased the TC and RR of Cr while increased those of Cd. The predictive models and insights provided by this work could aid the understanding of HM migration during manure and sludge pyrolysis and guide the preparation of low HM-contained biochar.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China.
| | - Lanjia Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|