1
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Liang Y, Liu Y, Zhao P, Chen Y, Lei J, Hou J, Hou C, Huo D. An electrochemical sensor based on FeCo bimetallic single-atom nanozyme for sensitive detection of H 2O 2. Anal Chim Acta 2023; 1281:341867. [PMID: 38783733 DOI: 10.1016/j.aca.2023.341867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 05/25/2024]
Abstract
Efficient catalytic decomposition of H2O2 is accompanied by electron transfer through Fe-Nx active sites of hemin in the human body. Inspired by this reaction process, the Fe SAs/Co CNs were successfully synthesized by combined Co atomic sites with nitrogen-carbon doped Fe single-atom active sites (SAs). The synergy between transition metals not only reduces agglomeration during synthesis but also improves its own electrical conductivity due to the interaction between Fe and Co that promotes the formation of graphite surface. Crucially, the synergistic effect of the Co site significantly enhanced the peroxidase activity of the Fe SAs and the reaction rate of the Fenton-like reaction, resulting in an efficient detection of H2O2. Catalytic kinetic calculations and enzymatic kinetic calculations were used to verify the electron transfer rate and catalytic performance of their constructed electrochemical sensing interfaces. The results showed that Fe SAs/Co CNs@GCE showed better detection performance than Fe SAs CNs@GCE. It was applied successfully to detect H2O2 released from cells in real-time as well. The linear detection range of Fe SAs/Co CNs@GCE for H2O2 was 1-16664 μM, and the detection limit was as low as 0.25 μM. Furthermore, an electrochemical sensing chip was constructed using Fe SAs/Co CNs@SPE and the prepared microfluidic channel. The constructed portable FeSAs/Co CNs@SPE had a linear range of 1-400 μM and a detection limit of 0.36 μM and achieved the recovery detection of H2O2 in serum. The electrochemical sensing interfaces constructed based on Fe SAs/Co CNs all have efficient catalytic performance and excellent real-time hydrogen peroxide detection performance, which have practical application potential for human oxidative stress level detection. And it provides a novel approach to the trace detection of bioactive small molecules.
Collapse
Affiliation(s)
- Yi Liang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| |
Collapse
|
3
|
Sun YY, Luo JY, Wu XQ, Wu YP, Li S, Yin YM, Ma HJ, Chi R, Li DS. Seaweed-like phosphates/MOF heterostructures as a synergistic electrocatalyst for alcohol oxidation. Chem Commun (Camb) 2023; 59:10672-10675. [PMID: 37581899 DOI: 10.1039/d3cc02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A series of seaweed-like heterogeneous Co3(PO4)2/Ni3(PO4)2/MOF-74-x electrocatalysts were synthesized via a hydrothermal method. The optimal composite exhibits excellent catalytic performance toward methanol/ethanol oxidation reactions (MOR/EOR) with peak current densities reaching 27.5 and 32.6 mA cm-2, respectively. This work heralds the advent of more efficient heterogeneous electrocatalysts for DAFCs and other energy conversion systems.
Collapse
Affiliation(s)
- Ya-Ya Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Jia-Yang Luo
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ya-Meng Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui-Juan Ma
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
4
|
Wang T, Zhao S, Ji Z, Hao L, Umer S, Liu J, Hu W. Fe-Ni Diatomic Sites Coupled with Pt Clusters to Boost Methanol Electrooxidation via Free Radical Relaying. CHEMSUSCHEM 2023; 16:e202300411. [PMID: 37186222 DOI: 10.1002/cssc.202300411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Pt-based catalysts for direct methanol fuel cells (DMFCs) are still confronted with the challenge of over-oxidation of Pt and poisoning effect of intermediates; therefore, a spatial relay strategy was adopted to overcome these issues. Herein, Pt clusters were creatively fixed on the N-doped carbon matrix with rich Fe-Ni diatoms, which can provide independent reaction sites for methanol oxidation reaction (MOR) and enhance the catalytic activity due to the electronic regulation effect between Pt cluster and atomic-level metal sites. The optimized Pt/FeNi-NC catalyst shows MOR electrocatalytic activity of 2.816 A mgPt -1 , 2.6 times that of Pt/C (1.115 A mgPt -1 ). Experiments combined with DFT study reveal that Fe-Ni diatoms and Pt clusters take charge of hydroxyl radical (⋅OH) generation and methanol activation, respectively. The free radical relaying of ⋅OH could prevent the over-oxidation of Pt. Meanwhile, ⋅OH from Fe-Ni sites accelerates the elimination of intermediates, thus improving the durability of catalysts.
Collapse
Affiliation(s)
- Tianqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shenghao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhijiao Ji
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lu Hao
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Sundus Umer
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Yulin University, Yulin, 719000, Shanxi Province, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Nie Y, Xu X, Wang X, Liu M, Gao T, Liu B, Li L, Meng X, Gu P, Zou J. CoNi Alloys Encapsulated in N-Doped Carbon Nanotubes for Stabilizing Oxygen Electrocatalysis in Zinc-Air Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111788. [PMID: 37299692 DOI: 10.3390/nano13111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow nanosphere (NiCo@NCNTs/HN) using dicyandiamide. NiCo@NCNTs/HN exhibited better ORR activity (half-wave potential (E1/2) of 0.87 V) and stability (E1/2 shift of only -13 mV after 5000 cycles) than commercial Pt/C. NiCo@NCNTs/HN displayed a lower OER overpotential (330 mV) than RuO2 (390 mV). The NiCo@NCNTs/HN-assembled zinc-air battery exhibited high specific-capacity (847.01 mA h g-1) and cycling-stability (291 h). Synergies between NiCo alloys and NCNTs facilitated the charge transfer to promote 4e- ORR/OER kinetics. The carbon skeleton inhibited the corrosion of NiCo alloys from surface to subsurface, while inner cavities of CNTs confined particle growth and the aggregation of NiCo alloys to stabilize bifunctional activity. This provides a viable strategy for the design of alloy-based catalysts with confined grain-size and good structural/catalytic stabilities in oxygen electrocatalysis.
Collapse
Affiliation(s)
- Yao Nie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bin Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150080, China
| | - Xin Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Thamilselvan A, Dang VD, Doong RA. Ni-Co bimetallic decorated dodecahedral ZIF as an efficient catalyst for photoelectrochemical degradation of sulfamethoxazole coupled with hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162208. [PMID: 36801406 DOI: 10.1016/j.scitotenv.2023.162208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, a NiCo bimetallic ZIF (BMZIF) dodecahedron material has been synthesized by the precipitation approach and then used for simultaneously photoelectrocatalytic degradation of sulfamethoxazole (SMX) and hydrogen production. The combination of Ni/Co loading in ZIF structure increased the specific surface area 1484 (m2 g-1) and photocurrent density (0.4 mA cm-2), which can facilitate the good charge transfer efficiency. In presence of peroxymonosulfate (PMS, 0.1 mM), the complete degradation of SMX (10 mg L-1) was achieved at initial pH of 7 within 24 min, with the pseudo-first-order rate constants of 0.18 min-1 and TOC removal efficiency of 85 %. Radical scavenger experiments affirm that •OH radicals were the primary oxygen reactive species to drive the SMX degradation. Along with SMX degradation at the anode, the H2 production was observed at the cathode (140 μmol cm-2 h-1), which was 1.5 and 3 times higher than that of Co-ZIF and Ni-ZIF, respectively. The superior catalytic performance of BMZIF was assigned to the distinctive internal structure and synergistic effect between ZIF and Ni/Co bimetals, which improves light absorption and charge conduction efficiency. This study may provide insight into the new way to treat polluted water and simultaneously produce green energy using bimetallic ZIF in a PEC system.
Collapse
Affiliation(s)
- Annadurai Thamilselvan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Van Dien Dang
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu dist., Ho Chi Minh 700000, Viet Nam
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
7
|
Zhang X, Wang X, Guan Z, Fang J, Sui R, Pei J, Qin Y, Wei D, Zhu W, Zhuang Z. An Ultrastable Rechargeable Zinc-Air Battery Using a Janus Superwetting Air Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52849-52856. [PMID: 36394544 DOI: 10.1021/acsami.2c14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rechargeable zinc-air batteries (ZABs) are promising energy storage devices, but their performance is limited by the air electrode, coming from the contradictory wettability requirements of the air electrode at charging and discharging. Herein, to improve the mass transport and adapt to its different requirements when charging and discharging the ZABs, a Janus air electrode was fabricated with a void-rich, superaerophobic oxygen evolution reaction catalytic layer and a dense superhydrophobic oxygen reduction reaction catalytic layer. The ZAB using the Janus air electrode exhibits a low voltage gap of 0.78 V for charging and discharging at 10 mA cm-2, and it can stably work for more than 1 month (1100 cycles) with the decay of only about 10%. Wettability analyses revealed that the Janus superwetting structure provides good electrolyte contact, improves the mass transfer of O2, and prevents electrolyte leakage and flooding, leading to the high performance. These results suggest the advantage of the Janus electrode in reversible energy-converting devices.
Collapse
Affiliation(s)
- Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Guan
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinjie Fang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Sui
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangyuanxiang Qin
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Synergetic contribution of Co3+/Co2+ and FeNC in CoFe@CoFe2O4 toward efficient electrocatalysts for oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ding J, Jing S, Yin C, Ban C, Wang K, Liu X, Duan Y, Zhang Y, Han G, Gan L, Rao J. A new insight into the promoting effects of transition metal phosphides in methanol electrooxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Highly dispersed L12-Pt3Fe intermetallic particles supported on single atom Fe-N -C active sites for enhanced activity and durability towards oxygen reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|