1
|
Wei S, Cui X, Li T, Ma X, Liu L. Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy. ChemMedChem 2025; 20:e202400822. [PMID: 39833508 DOI: 10.1002/cmdc.202400822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities. Furthermore, the opportunities and major limitations of pillar[n]arene-based SNDs for tumor therapy are discussed.
Collapse
Affiliation(s)
- Shubin Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xinyi Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, PR China
| |
Collapse
|
2
|
Cordeiro P, Menezes V, Ángel AYB, de Andrade KN, Fiorot RG, Alberto EE, Nascimento V. Chalcogen Bond-Driven Alkylations: Selenoxide-Pillar[5]arene as a Recyclable Catalyst for Displacement Reactions in Water. Chem Asian J 2025; 20:e202400916. [PMID: 39508242 DOI: 10.1002/asia.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
A novel strategy to catalyze alkylation reactions through chalcogen bond interaction using a supramolecular structure is presented herein. Utilizing just 1.0 mol % of selenoxide-pillar[5]arene (P[5]SeO) as the catalyst we achieved efficient catalysis in the cyanation of benzyl bromide in water. Our approach demonstrated high efficiency and effectiveness, with the results supported by designed control experiments and theoretical models, highlighting the catalytic effect of the pillar[5]arene through noncovalent interactions. Quantum-chemical calculations (ωB97X-D/def2-TZVP@SMD) pointed out that the catalyzed cyanation reaction followed an SN2-like mechanism, with energy barriers (ΔH≠) ranging from 16.7 to 18.2 kcal mol-1, exhibiting dissociative character depending on the para-substituent. 1H NMR analysis revealed that P[5]SeO acted as a catalyst through inclusion complex formation, facilitating the transfer of the electrophilic substrate to the aqueous solution for nucleophilic displacement. Our reaction protocol proved applicable to various substrates, including aromatic and alpha-carbonyl derivatives. The use of sodium azide as the nucleophile was also feasible. Importantly, our method allowed scalability, and the catalyst P[5]SeO could be recovered and reused effectively for multiple reaction cycles, showcasing sustainability.
Collapse
Affiliation(s)
- Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-141, Brazil
| | - Victor Menezes
- SupraSelen Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-141, Brazil
| | - Alix Y Bastidas Ángel
- Department of Organic Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Karine N de Andrade
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Outeiro São João Batista, Niterói, RJ, 24020-141, Brazil
| | - Rodolfo G Fiorot
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Outeiro São João Batista, Niterói, RJ, 24020-141, Brazil
| | - Eduardo E Alberto
- Department of Organic Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
3
|
Nobre PC, Cordeiro P, Chipoline IC, Menezes V, Santos KVS, Ángel AYB, Alberto EE, Nascimento V. Telluride-Based Pillar[5]arene: A Recyclable Catalyst for Alkylation Reactions in Aqueous Solution. J Org Chem 2024; 89:12982-12988. [PMID: 39233358 PMCID: PMC11421007 DOI: 10.1021/acs.joc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The syntheses of previously unknown sulfide- and telluride-pillar[n]arenes are reported here. These macrocycles, among others, were tested as catalysts for alkylation reactions in aqueous solutions. Telluride-pillar[5]arene (P[5]-TePh) showed the best performance, emulating the behavior of the methyltransferase enzyme cofactor S-adenosyl-l-methionine. Using 1.0 mol % of P[5]-TePh, benzyl bromides reacted with NaCN/NaN3 in water, yielding organic nitriles/azides. The catalyst was recycled and efficiently reused for up to six cycles. 1H NMR experiments indicate a possible interaction between the substrate and P[5]-TePh's cavity.
Collapse
Affiliation(s)
- Patrick C Nobre
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ingrid C Chipoline
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Victor Menezes
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Kaila V S Santos
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Alix Y Bastidas Ángel
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eduardo E Alberto
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| |
Collapse
|
4
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
5
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Guo J, Lin L, Wang Y, Zhang W, Diao G, Piao Y. Supramolecular Design Strategy of a Water-Soluble Diphenylguanidine-Cyclodextrin Polymer Inclusion Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206919. [PMID: 36296510 PMCID: PMC9607006 DOI: 10.3390/molecules27206919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
Diphenylguanidine (DPG) is a widely used secondary accelerator for the vulcanization of natural rubber (NR) latex. However, its low water solubility and high toxicity limit its use in high-end NR products. In this study, a water-soluble inclusion complex of DPG and a β-cyclodextrin polymer (β-CDP), termed DPG-β-CDP, was prepared through supramolecular interactions and characterized using Fourier-transform infrared spectroscopy, 1H NMR, scanning electron microscopy, and UV-vis spectroscopy techniques. In comparison with that of DPG, the water solubility of DPG-β-CDP was greatly enhanced because of the water-soluble host molecule. The molar ratio of DPG to the CD unit in β-CDP was determined to be 1:1. At 25 °C, the binding constant of DPG-β-CDP was found to be 9.2 × 105 L/mol by UV-vis spectroscopy. The proposed method for forming inclusion complexes with high potential for use as water-soluble vulcanization accelerators is promising.
Collapse
Affiliation(s)
- Junqiang Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Yuping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Korea
- Correspondence: or ; Tel.: +82-31-888-9169
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Suwon 16229, Korea
| |
Collapse
|
8
|
Construction of unique pseudo[1]rotaxanes and [1]rotaxanes based on mono-functionalized pillar[5]arene Schiff bases. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|