1
|
Kong XJ, Si GR, He T, Li JR. Metal pyrazolate frameworks: crystal engineering access to stable functional materials. Chem Soc Rev 2025; 54:3647-3680. [PMID: 40052931 DOI: 10.1039/d4cs00989d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
As the focus evolves from structure discovery/characterization (what it is) to property/performance exploration (what it is for), the pursuit of stable functional metal-organic frameworks (MOFs) has been ongoing in terms of both fundamental research and industrial implementation. Under the guidance of crystal engineering principles, a plethora of research has developed pyrazolate MOFs (metal pyrazaolate frameworks, MPFs) featuring strong coordination M-N bonding. This attribution helps them retain their structures and functions under the alkaline conditions required for practical use. Based on poly-topic pyrazolate ligands, various classic MOFs, such as Co(bdp), Fe2(BDP)3, Ni8L6, PCN-601, and BUT-55, to name a few, have revealed fascinating architectures, intriguing properties, and record-breaking performances in applications during the past decade. This review will present the full scope of MPFs to date: (1) the superiority and significance of constructing MPFs through the crystal engineering approach, (2) synthetic strategies adopted in building and/or modifying MPFs, (3) structural features and stability of the MPF community, and (4) potential applications in energy and environmental related fields. The future opportunities of MPFs are also discussed for designing the next-generation of smart materials. Overall, this review attempts to provide insights and guidelines for the customization of pyrazolate-based MOFs for specific purposes, which would also promote the development of stable functional porous materials for addressing societal challenges.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Guang-Rui Si
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China.
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China.
| |
Collapse
|
2
|
Zhigileva EA, Enakieva YY, Chernyshev VV, Senchikhin IN, Demina LI, Martynov AG, Stenina IA, Yaroslavtsev AB, Gorbunova YG, Tsivadze AY. An unexpected imidazole-induced porphyrinylphosphonate-based MOF-to-HOF structural transformation leading to the enhancement of proton conductivity. Dalton Trans 2024; 53:16345-16354. [PMID: 39315440 DOI: 10.1039/d4dt02143f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Post-synthetic modification of proton-conducting metal-organic frameworks (MOFs) by loading small molecules capable of generating protons into pores is an efficient approach for developing a new type of material with improved ionic conductivity. Herein, the synthesis, characterization and proton conductivity of a novel electroneutral MOF based on palladium(II) meso-tetrakis(4-(phosphonatophenyl))porphyrinate, IPCE-1Pd, are reported. The exposure of the obtained framework to imidazole by the diffusion vapor method has surprisingly led to its complete crystal-to-crystal MOF-to-HOF transformation, resulting in the formation of a novel hydrogen-bonded organic framework (HOF) IPCE-1Pd_Im, which is the first example of such kind of structural change among all known MOFs. This modification has led to an almost 25-fold increase in the proton conductivity in comparison with the pristine MOF, reaching up to 6.54 × 10-3 S cm-1 at 85 °C and 95% relative humidity, which is one of the highest values among all known porphyrin-based HOFs.
Collapse
Affiliation(s)
- Ekaterina A Zhigileva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation
| | - Yulia Yu Enakieva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
| | - Vladimir V Chernyshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
| | - Ivan N Senchikhin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
| | - Liudmila I Demina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
| | - Irina A Stenina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Basic Department of Inorganic Chemistry and Materials Science, Myasnitskaya str. 20, Moscow 101000, Russian Federation
| | - Andrey B Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Building 4, Moscow 119071, Russian Federation.
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Li XM, Jia J, Zhao M, Liu D, Gao J, Lan YQ. Cooperative defect engineering and ligand modification in UiO-66 to achieve high proton conductivity. Chem Commun (Camb) 2024; 60:6777-6780. [PMID: 38868861 DOI: 10.1039/d4cc01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
D-UiO-66-NIM with high proton conductivity has been synthesized through the dual strategy of defect engineering and ligand modification. Moreover, D-UiO-66-NIM exhibits good temperature cycling stability and durability in proton conductivity. This work has developed a new method to obtain efficient MOF-based proton conductors.
Collapse
Affiliation(s)
- Xiao-Min Li
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Junchao Jia
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Mingyang Zhao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Dongbo Liu
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, P. R. China.
| |
Collapse
|
4
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Pi X, Wang Y, Jing Z, Jin Y. Efficient adsorption of methylene blue in water by nitro-functionalized metal-organic skeleton‑calcium alginate composite aerogel. Int J Biol Macromol 2023; 253:126458. [PMID: 37619681 DOI: 10.1016/j.ijbiomac.2023.126458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
This paper presents the first investigation of the adsorption performance of methylene blue by the nitro-functionalized metal-organic framework (MIL-88B-NO2). MIL-88B-NO2 has a specific surface area of 836.0 m2/g, which is 109.8 % higher than MIL-88B. The maximum adsorption capacity of methylene blue is 383.6 mg/g, which is 68.2 % higher than that of MIL-88B. This phenomenon can be attributed to the great increase in specific surface area and the introduction of nitro-functional groups. However, its microcrystalline nature makes it difficult to remove in practical applications and quickly causes secondary pollution. Therefore, the composite of MIL-88B-NO2 and calcium alginate (CA) to form aerogel maintains the inherent properties of the two materials and makes it easy to recycle. The utmost adsorption capability of MIL-88B-NO2/CA-2 aerogel is 721.0 mg/g. Compared with MIL-88B-NO2, the adsorption performance of MIL-88B-NO2/CA-2 aerogel is further improved by 88.0 %. The higher adsorption capacity of the adsorbent may be due to the synergistic interplay of electrostatic attraction, π-π conjugation, hydrogen bonding, metal coordination effect, and physicochemical properties. Also, MIL-88B-NO2/CA-2 aerogel has good recyclability, indicating that it has broad application prospects in the removal of positive dyes in contaminated water.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Wu K, Liu XY, Cheng PW, Huang YL, Zheng J, Xie M, Lu W, Li D. Linker Engineering for Reactive Oxygen Species Generation Efficiency in Ultra-Stable Nickel-Based Metal-Organic Frameworks. J Am Chem Soc 2023; 145:18931-18938. [PMID: 37590883 DOI: 10.1021/jacs.3c05585] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pei-Wen Cheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|